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Abstract. The study of fracture is presently based on the dimensional analysis theory which as-
sumes the invariance of dimensionless equations with scale. However, in reality, the dimensionless
equations also change with scaled experimentation. The application of dimensional analysis to very
large structures is limited due to presence of significant scaling ratios and size effect. To overcome
these limitations of dimensional analysis, the fracture parameters are reanalyzed using a new scaling
theory called finite similitude theory. The concept of finite similitude is based on the metaphysical
notion of space scaling, where changes during the space and time deformation are assessed in view
of physical and trial space. This concept can be applied to all physics and is able to quantify the
scale dependencies more precisely. It has been applied to various domains such as impact mechanics,
powder compaction, biomechanics, electromagnetism and proved reliable in formulating the scale de-
pendencies accurately. Till now, this concept has been explored in the domain of linear elastic fracture
mechanics and elastic-plastic fracture mechanics. Here the concepts of finite similitude have been ex-
plored for notched concrete beam specimens under three-point bending tests. The fracture parameter
(stress intensity factor (KI)) is defined under quasistatic loading using first-order similitude theory.
Finite element analysis has been performed to validate the applicability of proposed theory. The study
highlights the appositeness of new finite similitude theory on the study of fracture parameters.

1 INTRODUCTION

Structural materials consist of various flaws,
defects, or voids in their microstructure, which
is virtually unavoidable. These flaws or defects,
under the action of load, give rise to stress con-
centration zones and assist in the failure of ma-
terial. Fracture mechanics is the field of solid
mechanics that considers the presence of cracks
in material and concerns with the propagation
of these cracks under various loading condi-
tions. It is based on the twin pillars of analytical
and experimental mechanics for the quantifica-
tion and characterisation of crack driving force
and resistance offered by the material. Fracture

mechanics, in its simplest form, is a method for
predicting failure for loaded components with
inherent flaws. It also offers the correct defini-
tion for classifying cracks into those that prop-
agate and those that do not. However, the scale
dependence of material properties poses a ma-
jor challenge in the accurate prediction of struc-
tural failure. Leonardo da Vinci [1], in his ex-
periments on load bearing capacity of iron wires
stated that “Among the cords of equal thickness,
the longest wire is the one with least strength”.
This phenomenon was termed as “scale effect”.
Galileo [2] further extended this study and de-
clared that the decrease in dimension of struc-
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ture increases its strength. The primary issue
associated with scaling pertains to scale effects,
wherein the behaviour of the scaled system no-
tably differs from that of the system at its full
size. If the scale effect is absent, then the be-
haviour of full-scale system can be readily ex-
plained from the laboratory scale experiments.
However, in reality, almost all the materials suf-
fer from scale effect which generates the need
for different studies considering the scale effect.

Regardless of the existence of scale effects,
scaled experiments are carried out in industry.
There are various reasons behind this, but the
majority of them are related to the high ex-
pense and/or impracticability of full-scale stud-
ies. The concept of scaling finds extensive ap-
plication across various domains of engineer-
ing, such as structural and fracture mechanics
[3-4], structural impact [5], explosive engineer-
ing [6], and thermofluids [7]. The increased
precision and efficacy of computer modelling
has surely had an impact on the kind and
nature of experiments conducted. A robust
computational model has the potential to com-
pletely substitute trials, while also serving as
a valuable complement to scaled experimenta-
tion. To some extent, modern numerical ap-
proaches can reduce the requirement of time
and resource associated with large scale labo-
ratory experimentations. The extended finite
element method (XFEM) is a particularly use-
ful example of a current approach for mod-
elling and analysing crack growth. It was de-
veloped by Moes et al. [8], based on the no-
tion of “partition of unity” and uses the enrich-
ment functions around the crack tip. The en-
richment function includes crack-tip asymptotic
function for stress singularity around the crack
tip and discontinuous function for displacement
jump along the crack surface. The use of these
functions enhance the analysis of stress and dis-
placement fields in the vicinity of crack tip,
thereby reducing the need for mesh refinement.
The traction-separation cohesive behaviour is
commonly employed in the XFEM framework
within the Abaqus/Standard software [9] to sim-
ulate the initiation and propagation of cracks.

However, in the context of intricate systems
characterised by substantial uncertainties, it is
not recommended to excessively depend on
computational methods, therefore necessitating
the presence of experiments. There are many
scenarios where continuous monitoring is not
feasible and hence the theoretical development
of experimental data is necessary. Hence, ex-
perimentation and simulations must work side
by side for developing a generalised theoretical
model and providing a clear insight of scale and
size effect.

The fracture behaviour of concrete is well-
known for exhibiting size effects. The Weibull’s
statistical size effect theory [10] describes the
size effect based on random strength of mate-
rial. According to this theory, the larger struc-
ture has more probability of failure owing to
larger chance of encountering a weaker strength
value. However, it was later shown that this
theory cannot be used to explain the behaviour
of quasi-brittle materials that fail with larger
cracks. Furthermore, when the structural size is
relatively large and material is highly heteroge-
neous, the Weibull’s statistical size effect theory
cannot be used [4]. In contrast to the statistical
size effect, Bazant [11] introduced the concept
of the energetic size effect, which is based on
deterministic energetic factors that contribute to
the observed size effect. In simpler terms, it
primarily takes into account the link between
nominal stress and the material’s characteris-
tic size. Additionally, when both stress (strain)
and energy are included in the fracture criterion,
the scaling law provides a progressive transition
from strength theory for small size to LEFM
for large size. Bazant [12] used dimensional
analysis approach to further explore the fracture
and size effect in concrete. Crack growth rate
under fatigue has been explored by various re-
searchers using the concept of incomplete self-
similarity and dimensional analysis [13-14].

Recently, a new scaling theory named fi-
nite similitude theory [15] has been appeared in
open literature which describes all scale depen-
dencies for a physical system without involv-
ing any approximation. Finite similitude theory
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is based on the metaphysical concept of space
scaling. The notion of manipulating the spatial
dimensions to facilitate scaled experimentation
appears to lack practicality. However, it is fea-
sible to evaluate the influence of this metaphys-
ical approach on the fundamental physics gov-
erning the behaviour of an experiment. Studies
on application of similitude can be dated back
to report submitted by Goodier and Thomson’s
[16] for the US Aeronautical Advisory Com-
mittee. Following this, Goodier’s book [17] de-
scribing the applicability of similitude to struc-
tural systems was published in 1950. Davey et
al. [18] introduced a new approach for scaled
experimentation in fracture mechanics using fi-
nite similitude theory. This paper presents nu-
merical simulations that illustrates the practical
advantages of the newly proposed scaling the-
ory in the field of fracture mechanics, particu-
larly in situations where scale effects are promi-
nent. The study was further explored for the
utilisation of two experiment theory to predict
the behaviour of large scale experiments by the
same authors [19]. The finite similitude theory
has the ability to connect more than one exper-
iment. The first-order rule is used to incorpo-
rate results from two scaled models at differ-
ent scales in order to predict the response be-
haviour of a prototype. The application of finite
similitude has been extended to the scaled cohe-
sive zone models for the fatigue crack propaga-
tions in metals [20]. It was shown that first or-
der similitude theory can accurately reproduce
the full scale behaviour of large structures. An
overall review on the application of this theory
on different engineering domains is reported by
Davey et al. [21]. Till now, the applicability
of finite similitude theory has been explored in
the domain of linear elastic fracture mechan-
ics and elastic-plastic fracture mechanics for the
metals and alloys. In recent work by Davey et
al. [22], it was shown via case studies that this
theory can also be used for concrete. However,
no extensive work can be found on application
of first-order finite similitude theory for fracture
properties of concrete.

In this study, an attempt has been made to

study the application of finite similitude theory
on fracture behaviour of concrete. The aim of
this study is to assess the behaviour of a spec-
imen across various scales based on the out-
comes of two experiments conducted at selected
scales. Here the concepts of finite similitude
have been explored for notched concrete beam
specimens under three-point bending tests. The
stress intensity factor (KI) is defined under
quasi-static loading using first order similitude
theory. For the crack growth modelling, XFEM
has been performed in ABAQUS. The stress in-
tensity factor is calculated in the ABAQUS soft-
ware using contour integral method to validate
the applicability of the proposed theory. The
study demonstrates the significance of the first-
order finite similitude condition in the context
of fracture mechanics of concrete structures.

2 FINITE SIMILITITUDE THEORY
Finite similitude theory is based on the meta-

physical concept of space scaling. This concept
involves the contraction or expansion of space
for the purpose of conducting scaled experi-
ments. It is important to note that space scal-
ing, although integral to the approach, cannot
be physically realised. However, it is possible
to evaluate the influence of scaling in the spatial
domain on the physical limitations that govern
the response of a structure.

2.1 Metaphysical concept of space scaling
Space-scaling is defined as a temporally in-

variant affine map denoted as xps 7→xts that
establishes a connection between coordinate
points in two inertial frames. There is a frame
located in the physical space (ps) and another
frame situated in the trial space (ts). Both
physical space and trial space are physical en-
tities where various processes occur. In phys-
ical space, full-scale activities are carried out,
whereas in trial space, scaled experimentation
is conducted. The differential expression for the
affine map can be written as dxts = Fdxps,
where the matrix F remains invariant both in
time and space. This expression relates coordi-
nate functions and has the form dxi

ts = F i
jdx

j
ps,
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where F i
j = dxi

ts/dx
j
ps, and xi

ts and xj
ps repre-

sent the coordinate functions for their respective
inertial frames. At this initial phase of explain-
ing the space-scaling approach, two advantages
become apparent. Firstly, in contrast to dimen-
sional analysis, the process offers a physical in-
tuitiveness. Secondly, the form of F determines
the nature of scaling, whether it is isotropic
or anisotropic. The study here is limited to
isotropic scaling only where F= βI, or in terms
of coefficient F i

j = βδij , where δij is Kronecker
delta symbol. The scalar β represents a posi-
tive real number that serves to quantify the de-
gree of length scaling that is present. The space
undergoes contraction for values of β between
0 and 1, where β = 1 represents no change in
length. Space expansion is indicated by values
of β greater than 1. Hence, this theory allows
for both expansion and contraction of physical
processes. Furthermore, by employing Newto-
nian frameworks, it is postulated that there are
absolute measures of time denoted as tts and tps
in their respective spaces. Similar to space, time
is also related by a differential identity of the
form dtts = gdtps, where g is assumed to be
both spatially and temporally invariant and pos-
itive.

2.2 Projected transport equations
After the quantification of space scaling in

mathematical form, the focus now shifts on the
effect of scaling on physical processes. The
trial space physics (where scaled experiments
sits) is projected onto the physical space (real
life structures) by means of transport equations.
The details of transport equations can be found
in [23]. A generic form of transport equation in
trial space can be represented as [18]:
D∗

D∗tts

∫
Ω∗

ts

ρtsΨtsdV
∗
ts +

∫
Γ∗
ts

ρtsΨts(vts − v∗
ts)·

ntsdΓ
∗
ts = −

∫
Γ∗
ts

JΨ
ts · ntsdΓ

∗
ts +

∫
Ω∗

ts

ρtsb
Ψ
tsdV

∗
ts

(1)

Where, ρts is material density, Ψts is physi-
cal field, vts is material velocity, v∗

ts is velocity
field in control volume, JΨ

ts is boundary flux, bΨts
is source term, dV ∗

ts is elemental volume, dΓ∗
ts is

elemental surface area vector and nts represents
the unit normal to the boundary Γ∗

ts of the con-
trol volume Ω∗

ts.
The Eq. (1) can be projected onto physical

space by substituting dV ∗
ts = β3dV ∗

ps, dΓ
∗
ts =

β2dΓ∗
ps, dtts = gdtps. Multiplying the whole

equation by g and scalar for transport equation
for field Ψ in zeroth-order theory (αΨ

0 ) will lead
to transport equation:

αΨ
0 T

Ψ
0 (β) =

D∗

D∗tps

∫
Ω∗

ps

αΨ
0 ρtsβ

3ΨtsdV
∗
ps

+

∫
Γ∗
ps

αΨ
0 ρtsβ

3Ψts(β
−1gvts − β−1gv∗

ts)

· npsdΓ
∗
ps +

∫
Γ∗
ps

αΨ
0 β

2gJΨ
ts · npsdΓ

∗
ps

−
∫
Ω∗

ps

αΨ
0 ρtsβ

3gbΨtsdV
∗
ps = 0

(2)

In the case of solid and fracture mechanics,
transport equations for volume, mass, momen-
tum, and movement are of prime interest. The
velocity field is constrained by transport equa-
tion of volume. Stress tensor field and specific
body force is constrained by transport equation
of momentum. Similarly, displacement field is
constrained by transport equation of movement.
Density and material velocity are constrained
by transport equation of mass. The transport
euation for the displacement field is of keen in-
terest in fracture studies as continuity equations
and others are generally fixed. Eq. (2) is a
general projection of trial space onto physical
space. In regards with fracture mechanics, the
transport equations are given as follows. Scaled
transport equation for volume:

α1
0T

1
0 (β) =

D∗

D∗tps

∫
Ω∗

ps

α1
0β

3dV ∗
ps−∫

Γ∗
ps

α1
0β

3(β−1gvts · nps)dΓ
∗
ps

= 0

(3)

Scaled transport equation for mass:
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αρ
0T

ρ
0 (β) =

D∗

D∗tps

∫
Ω∗

ps

αρ
0ρtsβ

3dV ∗
ps

+

∫
Γ∗
ps

αρ
0ρtsβ

3(β−1gvts

− β−1gv∗
ts) · npsdΓ

∗
ps = 0

(4)

Scaled transport equation for momentum:

αv
0T

v
0 (β) =

D∗

D∗tps

∫
Ω∗

ps

[αv
0g

−1βρtsβ
3](β−1gvts)

dV ∗
ps +

∫
Γ∗
ps

[αv
0g

−1βρtsβ
3](β−1gvts)

(β−1gvts − β−1gv∗
ts) · npsdΓ

∗
ps

+

∫
Γ∗
ps

αv
0β

2gσts · npsdΓ
∗
ps

−
∫
Ω∗

ps

αv
0ρtsβ

3gbvtsdV
∗
ps = 0

(5)

Scaled transport equation for movement:

αu
0T

u
0 (β) =

D∗

D∗tps

∫
Ω∗

ps

[αu
0βρtsβ

3](β−1uts)

dV ∗
ps +

∫
Γ∗
ps

[αu
0βρtsβ

3](β−1uts)

(β−1gvts − β−1gv∗
ts) · npsdΓ

∗
ps

−
∫
Ω∗

ps

αu
0βρtsβ

3(β−1gvts)dV
∗
ps = 0

(6)

Here, u denotes the displacement field. The
purpose of αΨ

0 term in Eq. (3), (4), (5), (6) is
to eliminate β terms and v∗ts = βg−1v∗ps and
α1
0 = β−3 are essential conditions to satisfy ze-

roth order finite similitude thoery [19].

2.3 First-order finite similitude theory
The fact that the finite-similitude formula-

tion is not constrained to one particular in-
variance is its primary advantage over dimen-
sional analysis. A simple assumption is that the
physics of the trial spaces do not change with
scale; theoretically, this can be represented by
the identity:

d

dβ
(αΨ

0 T
Ψ
0 ) ≡ 0 (7)

Which when satisfied is termed as zeroth-
order finite similitude. More details on this can
be found in [23]. Here, symbol ’≡’ implies
that derivative is identically zero. The notion
of kth-order finite similitude is defined as the
minimum derivative that fulfils the conditions:

TΨ
k+1 =

d

dβ
(αΨ

k T
Ψ
k ) ≡ 0 (8)

∀β > 0, with αΨ
0 T

Ψ
0 given by Eq. (2) where

scalars αΨ
k are functions of β with αΨ

k (1) = 1.
Fracture analysis of scaled experimentation can
be accurately done by using the two experi-
ment theory; where, additional information can
be obtained from the data [?]. Hence, first-
order finite similitude theory has been shown to
be adept for fracture studies [19] which can be
written as:

TΨ
2 =

d

dβ
(αΨ

1 T
Ψ
1 ) =

d

dβ

(
αΨ
1

d

dβ
(αΨ

0 T
Ψ
0 )

)
≡ 0 (9)

The identities relevant to fracture mechanics
and fatigue are derived by integrating eqn. 9
for each transport equation, and are as follows:

vps = β−1
1 g1vts(β1) +Rρ

1

(β−1
1 g1vts(β1)− β−1

2 g2vts(β2))
(10)

vps = β−1
1 g1vts(β1) +Rv

1

(β−1
1 g1vts(β1)− β−1

2 g2vts(β2))
(11)

σps = αv
01g1β

2
1σts(β1) +Rv

1

(αv
01g1β

2
1σts(β1)− αv

02g2β
2
2σts(β2))

(12)

bvps = g21β
−1
1 bvts(β1) +Rv

1

(g21β
−1
1 bvts(β1)− g22β

−1
2 bvts(β2))

(13)

ups = β−1
1 uts(β1) +Ru

1

(β−1
1 uts(β1)− β−1

2 uts(β2))
(14)

vps = β−1
1 g1vts(β1) +Ru

1

(β−1
1 g1vts(β1)− β−1

2 g2vts(β2))
(15)

where, for consistent velocity it is necessary
that R1 = Rρ

1 = Ru
1 = Rv

1 and it is inherently
assumed that zeroth-order conditions apply.
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2.4 Scale invariance in fracture mechanics
The stress field under scaling is the first thing

to take into account, and it is argued that each of
the scaled fracture specimens can be expected
to have almost identical stress fields local to
a crack tip. Due to this criterion, the theory
should be able to account for the scale invari-
ance, which reduces Eq. (12) to:

1 = αv
01g1β

2
1 +R1(α

v
01g1β

2
1 − αv

02g2β
2
2) (16)

In differential terms, αv
1(α

v
0gβ2) is constant,

where ”constant” implies independent of β. It
implies that fracture process zone can also be
taken into account using this equation where
it changes in the similar form. The fixing of
displacement (separation in cohesive elements),
i.e., ups = uts1 = uts2, which when applied to
Eq. (14), provides another desirable scale in-
variance as:

1 = β−1
1 +R1(β

−1
1 − β−1

2 ) (17)

Further information on this topic can be ex-
plored in the scholarly work of Davey and
Darvizeh [23], wherein they analyse the utili-
sation of transport equations in the context of
fracture. Another important point of considera-
tion is strain which can be written as:

ϵps = αv
01g1β

2
1ϵts1 +R1(α

v
01g1β

2
1ϵts1

− αv
02g2β

2
2ϵts2)

(18)

This condition states that αv
01g1β

2
1 = αv

02g2β
2
2 =

1. It is important to note that g1 and g2 do not
have any significance in a quasistatic analysis.
Hence, the two experiment theory has freedom
limited in the selection of scales β1 and β2.

3 DETERMINATION OF STRESS IN-
TENSITY FACTOR USING TWO EX-
PERIMENT THEORY

Finite similitude theory has been used to es-
timate the stress intensity factor of a three-point
bending specimens using two trial spaces. The
trial spaces are combined in such a way that it
can accurately estimate the value of larger phys-
ical space. The stress intensity factor for physi-
cal space can be defined as [19]:

KIps = αv
01g1β

3/2
1 KIts1 +R1(α

v
01g1β

3/2
1 KIts1

− αv
02g2β

3/2
2 KIts2)

(19)

Here, KIps is stress intensity factor for phys-
ical space. KIts1 and KIts2 are stress intensity
factors for trial spaces 1 and 2 respectively. α,
g, and β are the scaling factors. Further details
on these can be found in [20].

Series of geometrically similar beams have
been chosen for the present study from the ex-
isting literature [24]. The details of the beam
specimen has been given in Table 1. The
beams are of constant thickness of 50 mm with
Young’s modulus of 27000 MPa and Poisson’s
ratio 0.19. For the present study, medium and
small beams are treated as trial spaces, ts1 and
ts2, respectively. A virtual model for physical
space has been constructed using these two trial
spaces and the result has been matched with the
large beam specimen; latter acting as physical
space.

Table 1: Specimen dimensions of all beams [24]

Specimen Span (S) Length (L) Depth (D) Notch size (a0)
(mm) (mm) (mm) (mm)

Small(ts2) 200 300 50 10
Medium(ts1) 400 550 100 20

Large(ps) 800 1000 200 40

Values for the scaling factors mentioned in
Eq. (19) are calculated for the present beam
specimens, as αv

01g1 = β−2
1 and αv

02g1 = β−2
2

and presented in Table 2.

Table 2: Values of scaling factors for virtual model

Model β1 β2 αv
01g1 αv

02g1 R1

1 0.5 0.25 4 16 0.5

Using these factors, the applied loads for the
scaled ts1 and ts2 models are calculated using
peak load of physical model (ps) as [20]:

Fts1 = Fps/α
v
01g1 = 1007.5N

Fts2 = Fps/α
v
02g1 = 251.8N (20)
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The stress intensity factor value for full scale
model or physical model is estimated from the
combination of trial models under the scaled
loading using Eq. (19). In the following sec-
tion, numerical model is presented for the used
beam specimens.

3.1 Numerical analysis

Prior to the application of any scaling rules,
it is crucial to validate the numerical results
in order to ascertain the accuracy of the nu-
merical modelling and its alignment with ex-
isting published research. For this purpose,
the crack growth in all three beams speci-
mens is simulated using XFEM cohesive zone
model in ABAQUS software. The XFEM frac-
ture growth is determined by the linear elas-
tic traction-separation model, damage initiation
criteria, and damage evolution laws. In this
study, the maximum principal stress is used in
the damage initiation criteria [25], which deter-
mines the direction of initiation and propagation
of crack. According to the maximum principal
stress theory, material failure happens when the
principal stress reaches its maximum value and
the yield criteria is met. Damage evolution is
applied in accordance with the descending lin-
ear portion of the bilinear traction-separation
law, which represents the behaviour of material
softening and stiffness degradation. The input
of damage evolution is the fracture energy of the
material, which represents the resistance to the
extension of crack. The structured mesh with 8-
node-linear brick element (C3D8R) is used for
all specimens. The meshing for medium speci-
men is shown in Fig. 1 and the deformed phys-
ical model along with cracking profile is pre-
sented in Fig. 2.

Figure 1: Mesh details of medium specimen

Figure 2: Cracking profile of medium beam specimen ob-
tained from Abaqus

Another model for all three specimens have
been prepared in ABAQUS to estimate the
stress intensity factor at crack tip using con-
tour integral method. The Von Mises stresses
for these specimens are presented in Fig. 3, 4,
5.

Figure 3: Von Mises stress distribution at the crack tip for
large specimen
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Figure 4: Von Mises stress distribution at the crack tip for
medium specimen

Figure 5: Von Mises stress distribution at the crack tip for
small specimen

4 VALIDATION OF MODEL

The crack mouth opening displacement
(CMOD) has been calculated from the de-
formed model along the crack propagation us-
ing XFEM. The load-CMOD curves are then
plotted for all the specimens and compared with
the experimental results. Fig. 6, 7, 8 shows
the load-CMOD plots for large, medium and
small specimens respectively. From the plots,
it can be observed that a good aggrement is
found with the experimental data. The calcu-
lated stress intensity factor values medium (ts1),
small (ts2), and large (ps) has been reported in
the Table 3. The virtual model made using com-
bination of ts1 and ts2 has the KI value of 268.8
MPa·mm0.5, which is almost equal to the stress
intensity factor of physical model. Thus, it can
be inferred that the aforementioned finite simil-
itude theory can be used for fracture studies of
concrete.

Figure 6: Comparison of Load-CMOD curves for large
specimen

Figure 7: Comparison of Load-CMOD curves for
medium specimen

Figure 8: Comparison of Load-CMOD curves for small
specimen
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Table 3: Values of stress intensity factor for different
models

Model KI (MPa.mm0.5)
ts1 131.51
ts2 10.17

virtual 268.8
ps 266

5 CONCLUSIONS
This study investigates a novel framework

for fracture mechanics of concrete based on the
first-order finite similitude rule derived from fi-
nite similitude theory. The concept of first-
order finite similitude combines data collected
at two different scales in order to accurately
replicate phenomena at the larger scale. The
study involved an investigation of prior experi-
mental data available in open literature pertain-
ing to plain concrete. It was shown that, de-
spite the existence of a geometric size effect, it
is feasible to extrapolate the behaviour observed
in full-scale model based on the outcomes of
two scaled tests. The stress intensity factor in
three-point bend notched concrete specimen is
evaluated using the concepts of first order finite
similitude theory. The study is validated using
numerical results obtained from ABAQUS and
a good agreement is found between them. The
study can be further explored to define other
fracture parameters and size effect in concrete
structures under the action of cyclic loading.
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