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Abstract. The main aim of the current study is to explore direction-dependent fracture initiation and

propagation within an arbitrary anisotropic solid. In particular, the specific objective is to develop

an anisotropic cohesive phase-field (PF) fracture model. The anisotropy in fracture due to mixed-

mode conditions. A power law-inspired fracture criterion is adopted and it captures the dominating

mode behavior of fracture. A volumetric-deviatoric energy split has been implemented to capture

the impacts of mixed modes. The performance of the model is demonstrated through numerical

examples to predict anisotropic fracture in quasi brittle materials such as rock and wood under mixed

mode loading conditions. The numerical results are validated by comparing with experimental results

available in litreature.

1 INTRODUCTION

Fracture in materials like composites, wood,

and polycrystalline materials is anisotropic in

nature. Anisotropy is the property of being

directionally dependent. It is defined as the

difference in the physical property of a cer-

tain material when measured along different

axes. The directional dominance in the ma-

terial due to anisotropy can be classified as

structural, magnetic, or induced. Structural

anisotropy may be attributed to the presence of

fibers, grain boundaries, voids, defects in poly-

crystalline materials, and crystallographic ori-

entation. Various types of composites, poly-

crystals, wood, and layered rocks like shales

and sandstones are some examples of materi-

als that are structurally anisotropic. Some ex-

amples of materials with induced anisotropy in-

clude the Strong anisotropic behavior of Fer-

romagnetic materials processed in a magnetic

field [1]. Magnetic anisotropy can be seen

for materials when magnetic properties vary in

the different orientations [2]. The anisotropic

fracture can be modeled by incorporating an

orientation-dependent critical fracture energy

functionGc(θ). Anisotropy can be broadly clas-

sified into (a) weak anisotropy (like in trans-

versely isotropic materials or like in orthotropic

materials having one or two independent fiber

orientations) and (b) strong anisotropy (like in
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materials with cubic symmetry, materials with

sawtooth crack patterns, like those observed in

thin anisotropic sheets [3]). The weak or strong

anisotropic systems can be defined from the po-

lar plot of inverse fracture toughness 1/Gc(θ).
For simulating fracture in weakly anisotropic

materials, like fiber-reinforced composites hav-

ing one or two fiber families, a convex fracture

energy function, Gc(θ) is sufficient, whereas,

to model the fracture in thin anisotropic sheets,

where the crack path is unstable, and results

in sawtooth type patterns and crack kinking,

defining a non-convex fracture energy function,

Gc(θ) is essential. Furthermore, the direction

of the crack path is dependent on the state of

stress near the crack tip. Crack propagation

and path can vary based on the loading direc-

tion, stating the varying stress state and, in turn,

anisotropy in the stress state. Apart from ma-

terial directionality, an anisotropic fracture thus

results from a variable stress state and energy

release rate due to loading conditions. In sum-

mary, for a material, three levels of anisotropy

can thus be seen: the presence of anisotropy,

like the stress state, fracture toughness, and ma-

terial orientation itself.

Phase field models have been adopted to

model both weakly anisotropic [4, 5] and

strongly anisotropic materials [6, 7]. In [7],

the effective length scale parameter l(ξ, θ) have

been defined in terms of crack orientation θ
and fiber orientation ξ for three cases, namely,

(a) transversely isotropic, (b) orthotropic, and

(c) cubic anisotropy. The stress state-induced

anisotropy at the crack tip is captured using

a structural tensor to give the direction to the

crack [8]. As the material’s weak plane is the

possible fracture direction, this tensor considers

the crack angle in a weak plane. For materi-

als like composite, which have the directional-

ity present due to fiber orientation, the structural

tensor is used to denote fiber direction in ma-

terial [4, 9]. In the case of aluminum sheets,

the directionality imparted due to the rolling

of these sheets governs the fracture path [10].

Piezoelectric materials have high directional-

ity in the poling direction. The tensor present

in the crack surface density function considers

the poling guidance, its perpendicular direction,

and respective fracture toughness values. This

term captures the anisotropic behavior of frac-

ture toughness [11]. The favored fracture di-

rection is the one along the minimum fracture

energy value. The anisotropic fracture tough-

ness incorporates crack projection in the most

vulnerable plane, and a maximum energy re-

lease rate criterion is employed for crack direc-

tion prediction [12]. Direction-dependent frac-

ture toughness at atomistically calibrated scales

can be calculated based on crack direction and

material directionality using a phase field ap-

proach [13]. Anisotropic fracture in crystal-

lographic materials is captured by introducing

an anisotropic term using damage gradients in

fracture energy [14]. Phase field framework is

used in a variety of fracture problems [15–17].

In a phase field approach, different decomposi-

tion and energy split methods are attempted in

literature [18, 19]. Energy splits are used with

different fracture criteria, such as the B-K [20]

and power law criteria [21], which define the

driving force for mixed-mode fracture. These

models capture the mixed-mode effects and ef-

fectively show the fracture corresponding to the

dominating state of stress [22–24].

In this present work, we present a phase field

approach for modeling mixed-mode fracture in

a weakly anisotropic material. This is achieved

by considering a second-order structural ten-

sor in the crack density function. A mixed-

mode approach that uses a power-law for com-

bining the modes is adopted from the litreature

[24]. A volumetric-deviatoric split of energy

is used to define the terms driving the fracture

corresponding to modes I and II. The evolution

of fracture is tracked by adopting a staggered

scheme. The proposed model is applied to in-

vestigate a) anisotropic fracture in rock-like ma-

terials with multiple fissures under mixed-mode

conditions and b) the role of mode mixity on

the mixed-mode anisotropic fracture behavior

of Russian pine wood. The paper is organized

as follows in section 2 we discuss the methodol-

ogy of the phase field formulation. In section 3
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we present the numerical examples. In the last

section the conclusions are presented.

2 METHODOLOGY

In phase field approach a sharp crack Γ
present in a body B is regularized and repre-

sented as diffused crack Γl as shown in Figure

1. The body with a sharp crack, is subjected to

traction and body forces, fff t and fff b. The reg-

ularized crack function is written in terms of a

scalar phase field order parameter representing

the crack in the material as shown in Figure 2.

The regularization of crack is given by,

Γl =

∫

B

γ(ϑ,▽ϑ)dB (1)

The crack density function is defined as,

γ(ϑ,▽ϑ) =
1

2lϑ
(ϑ2 + l2ϑ |▽ϑ|

2) (2)

The scalar fracture parameter ϑ(xxx) is ob-

tained by minimization of Γl as,

ϑ(xxx) = e
− |xxx|

l
ϑ (3)

The width of the regularized crack is given by

length scale parameter, lϑ. As, lϑ → 0, Γl → Γl

and transition of the crack parameter is seen

from 0 to 1. ϑ(xxx) = 1 denotes a completely frac-

tured state and ϑ(xxx) = 0 shows the uncracked

condition of the material.

Anisotropic crack density function can be

used to capture the material’s directionality.

γ(ϑ,▽ϑ) =
1

2lϑ
(ϑ2 + l2ϑ▽ϑ ·AAA▽ϑ) (4)

The structural tensor AAA denotes the direction of

material along the fibers or the rolling direction

with ω as a penalty parameter and NNN a direc-

tional tensor.

AAA = III+ωNNN⊗NNN, NNN =
[

cosθ sinθ 0
]T

(5)

The total potential energy of the system is

given by.

Π =

∫

B

Ψ(εεε) dB+

∫

B

Gc γ(ϑ,▽ϑ) dB

−

∫

B

fff b · uuu dB−

∫

∂B

fff t · uuu dA (6)

∂Bt

∂Bt

nnn
σσσ ·nnn = fff t

σσσ ·nnn = fff t

∂Bu

∂Bu

B

B

Γ

Γl

lϑ

(a)

(b)

Figure 1: Representation of domain with (a) sharp crack

(b) regularized crack

ϑ(xxx)

ϑ(xxx)

1

1

xxxxxx lϑlϑ

Figure 2: Sharp and diffused crack at xxx = 0

The elastic strain energy is split into volu-

metric and deviatoric parts.

Ψ+ = Ψ+
vol +Ψdev and Ψ− = Ψ−

vol (7)
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Ψ+ =
1

2
Kv < tr(εεε) >2

+ +µεεεdev : εεεdev (8)

Ψ−
vol =

1

2
Kv < tr(εεε) >2

− (9)

εεεdev = εεε−
tr(εεε)

3
(10)

Kv is the bulk modulus and µ is the shear mod-

ulus of the material. For < x >±=
x±|x|

2

HI = max
tǫ[0,T ]

Ψ+
vol HII = max

tǫ[0,T ]
Ψdev (11)

HI is the history parameter for elastic energy

induced by volumetric dilation, and HII is the

history parameter for elastic energy induced by

deviatoric deformation. GIc and GIIc are crit-

ical fracture toughness values corresponding to

modes I and II.

The structural equilibrium condition is ob-

tained by the minimization of the total energy

with respect to the deformation. Additionally,

an evolution equation is defined by minimiza-

tion of the free energy function. A finite ele-

ment scheme is then adopted to solve these two

equations. The evolution of fracture together

with equilibrium is solved in a staggered ap-

proach. The equilibrium equation and evolution

equation of damage are given by,

▽ · σσσ + fff b = 0 (12)

−2 (1− ϑ)

(

HIlϑ
GIc

+
HIIlϑ
GIIc

)

+

(

ϑ

lϑ
− lϑ▽

2ϑ

)

= 0

(13)

3 NUMERICAL EXAMPLES

In this section, we present the numerical ex-

amples that are used to demonstrate the effi-

ciency of the proposed model. A MATLAB

code has been implemented in finite element

frame work for the analysis. Three noded trian-

gular elements are used for the analysis. Three

examples are considered for analysis namely a)

Rectangular plate with one inclined crack un-

der mixed mode condition b) Rectangular plate

with multiple inclined crack c) Wood speci-

men under mixed mode loading condtion. The

numerical results are verified and validated by

comparing with the results availabe in the litrea-

ture.

3.0.1 Rectangular plate with one inclined

crack

A rectangular plate with an inclined crack

example is considered for analysis under the

mixed mode conditions. The rectangular plate

is of dimensions 152.4x76.2 mm, as shown in

Figure 3. A plane strain condition is consid-

ered for the analysis. The material properties

for a rock-like material namely: Elastic modu-

lus, E = 4.2 kN/mm2, Bulk modulus, Kv = 3.5

kN/mm2, critical fracture toughness for mode

I, GIc = 5.0x10−6kN/mm and mode II, GIIc

= 13GIc are considered for the analysis. These

values are taken from the litreature [22]. The

Poisson’s ratio of the material is taken as 0.3.

The plate is considered to be fixed at the bottom

edge, and a displacement of 5x10−5mm is ap-

plied on the top edge. The initial length of the

central crack inclined at an angle of 30◦ is taken

as 12.7 mm. Upon application of the compres-

sive loading, there is an increase in crack length.

Initially, the wing cracks are formed, followed

by the formation of the secondary cracks as

shown in Figure 4. The primary wing crack

formation is attributed to the volumetric term

present in the energy, and the deviatoric strain

energy term helps in predicting the secondary

crack formation. The wing crack formation

and subsequent secondary crack growth are at-

tributed to the pure tensile and shear modes

associated with fracture. This is also clearly

evident from the experimental results obtained

from literature [25] of the same material as

shown in Figure 5. This validates the fact that

the present model is able to predict the mixed-

mode anisotropic fracture.
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Figure 3: Geometry for rock with single fissure
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Figure 4: Evolution of phase field ϑ (xxx) for rock with

single fissure

Figure 5: Experimental result of fracture in rock [25]

3.0.2 Rectangular plate with multiple in-

clined cracks

A rectangular plate with multiple inclined

cracks example is considered for analysis un-

der the mixed mode conditions. The rectangu-

lar plate is of dimensions 152.4x76.2 mm, as

shown in Figure 6. A plane strain condition is

considered for the analysis. The material prop-

erties for a rock-like material namely: Elastic

modulus, E = 4.2 kN/mm2, Bulk modulus, Kv

= 3.5 kN/mm2, critical fracture toughness for

mode I, GIc = 5.0x10−6kN/mm and mode II,

GIIc = 13GIc [22] are considered for the analy-

sis. The Poisson’s ratio of the material is taken

as 0.3. The plate is considered to be fixed at the

bottom edge, and a displacement of 5x10−5mm

is applied on the top edge. The initial length of

the inclined cracks at an angle of 30◦ is taken

as 12.7 mm. Two cases are considered here for

analysis. In the first case, termed case A, two

fissures are separated by a distance of 20 mm.

This separation between the cracks is known

as ligament length. In the second case, termed

case B, three cracks are considered as depicted

in figure 6. The third crack is between the two

cracks with a bridging angle 60◦.

Crack ACrack A

Crack BCrack B

Crack C

1
5
2
.4

m
m

uuuuuu

30
◦

30
◦

30
◦

30
◦

30
◦

60
◦

76.2 mm76.2 mm

12.7
mm

12.7
mm

12.7
mm

12.7
mm

12.7
mm 20 mm

20 mm

(A) (B)

Figure 6: Geometry for rock with (A) 2 fissures (B)

3 fissures
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The fracture in case A includes a shear crack

due to compressive fields and a wing and sec-

ondary shear crack, as shown in Figure 7. The

appearance of wing cracks is due to the pure

tensile, and secondary cracks are because of the

shear behavior of loading. The crack in lig-

ament length is the coalescence of secondary

shear and out-of-plane shear cracks. In the case

of B, the presence of a third crack with a smaller

ligament length results in the coalescence of

cracks. The wing cracks of the third crack

merge with those of the above two cracks. It is

seen that the smaller ligament length and bridg-

ing angle result in the coalescence of cracks

to a greater extent. Figure 8 shows the load-

displacement response for all the above cases.

The primary or wing cracks generally grow in

the direction of the bedding plane of the rock

[12]. At the same time, the orientation of sec-

ondary or shear cracks is not seen to grow along

the direction of the bedding plane.

Wing crack

Wing crack

Wing crack

Wing crack

Secondary
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Figure 7: Evolution of phase field ϑ (xxx) for rock with

(A) 2 fissures (B) 3 fissures
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Figure 8: Load displacement response for rock

3.0.3 Mixed-mode fracture in wood

A circular arcan specimen of Russian pine

wood with a 100 mm diameter is considered for

the analysis. The crack length is 30 mm. The

thickness of the specimen is considered as 0.3

mm. A plane strain condition is assumed for the

analysis. The material properties of the wood

are taken as elastic modulus, E11 = 4717.07

MPa, E22 = 163.539 MPa, and Poisson’s ratio,

ν12 = 0.344. The Shear modulus is considered

as G12 = 226.420 MPa [26].

Table 1: Fracture toughness

Angle GIc (N/mm) GIIc (N/mm)

10◦ 0.3065 0.3491

30◦ 0.24865 0.4554

40◦ 0.2108 0.6880

Wood, an orthotropic material, has its fiber

orientation in a particular direction. The crack

propagation in wood is mainly along the fiber

orientation. This example aims to understand

the behavior of anisotropy under mixed-mode

conditions. The mode mixity ratio is changed

by varying the inclination of the crack. The

specimen is subjected to a tensile loading. An

6
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inclined crack is considered along the fiber di-

rection.

uuu

uuu

θ

1
0

0
m

m

30 mm

Figure 9: Geometry and boundary conditions for

mixed mode fracture in wood

It is seen that the crack propagation in wood

follows the path of fiber direction irrespective

of crack angle. Figures 9 and 10 show the ar-

can specimen’s geometric conditions and crack

evolution as per the phase field model. Figure

11 shows the experimental results of the arcan

specimen of wood. Phase field results are com-

pared with the experimental results [26]. Figure

12 shows the load-displacement response for

the wood specimen. In this case of the chosen

parameters, the mode mixity is found to have

very lttle influence on anisotropic fracture.

0
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0.6
0.8
1

(a) (b) (c) ϑ(xxx)

Figure 10: Evolution of crack phase field ϑ (xxx) for

different angle of inclinations (a) 10◦ (b) 30◦ (c) 40◦

(a) (b) (c)

Figure 11: Experimental results [26] for mixed mode

fracture in wood for different angle of inclinations
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Figure 12: Load displacement response for wood

4 CONCLUSIONS

In this work, an anisotropic phase field

model that accounts for mixed-mode fracture

criteria has been formulated and implemented.

It has been demonstrated through several exam-

ples that the mixed-mode criterion successfully

captures the dominating fracture mode. This is

evident from the presence of primary and sec-

ondary cracks in certain materials. The model

is also able to predict mixed-mode fracture in

wood-like materials.
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