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Abstract. Concrete is one of the most commonly utilized building materials and has a significant en-
vironmental footprint due to its production process. Over the past decades, considerable progress has
been made in developing high-performance and ultra-high-performance concretes and incorporating
fiber reinforcements in structural concrete, resulting in improved strength and durability, and opening
the possibility of creating slenderer structures leading to significant material savings. However, ad-
equate models and design approaches must accompany these material improvements to fully realize
the potential benefits, especially considering the effects of the long-term sustained loads.
This work focuses on material behavior aspect of plain and fiber-reinforced high-performance con-
crete, investigating damage processes and mechanisms occurring at small scales, which are not readily
observable during loading tests. To this end, it presents a framework for generating mesoscale con-
crete models based on virtually created aggregate and fiber distributions [1] and Computational To-
mography (CT) images. A finite element model utilizing zero-thickness interface elements is applied
to simulate the fracture of concrete specimens on the laboratory scale. The zero-thickness interface
elements are equipped with a cohesive-frictional traction-separation law a model for hysteresis oc-
curring due to incomplete crack closure during loading-unloading cycles [2]. The steel fibers are
considered explicitly and modeled as elastoplastic Timoshenko beam elements. The 3D elastoplastic
constitutive law with isotropic is adapted for beam elements by iterative solution of zero stress con-
straints via Newton’s method [3]. The embedment of fibers into the cement matrix is facilitated via a
penalty-based frictional tying algorithm that enables flexible placement of fibers without needing to
conform with the background mesh. The bond between the cement matrix and fibers is modeled via
an elastoplastic bond-slip law proposed in [4], whose parameters are calibrated based on single-fiber
pullout experiments. All model components are implemented into the open-source Finite Element
program “Kratos Multi-physics” [5]. The capabilities of the proposed model are demonstrated by re-
analyzing several experimental scenarios, such as notched prismatic specimens under uniaxial tension
[6] and comparing results with the available experimental data.

1 INTRODUCTION
Concrete, the second most utilized substance

worldwide after water, plays a central role in
the construction industry. Its primary ingredi-
ent, cement, is the most produced material on
Earth by mass [7]. However, the production
of cement and concrete contributes significantly

to CO2 emissions. Although the cement in-
dustry has made commendable strides in reduc-
ing CO2 emissions through improved energy ef-
ficiency and the adoption of alternative fuels,
it remains imperative to further decrease emis-
sions to meet the growing demand for cement-
based materials in the years ahead. Optimizing
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the design mixes to obtain high- and ultra-high-
performance concrete (HPC and UHPC, respec-
tively) is an attractive option that reduces the to-
tal cement consumption [7].
Further, high- and ultra-high- performance con-
crete enable more architectural freedom to de-
sign slender, aesthetically pleasing, and sustain-
able constructions. The addition of fibers to the
mix typically enhances the durability [8] and
impact resistance of such concretes [9]. Also,
it is well known that fiber-reinforced concrete
fails in a much more ductile way [8], allow-
ing more time for safe evacuations in emer-
gency situations. Another critical issue is the
behavior of HPC and UHPC under short- and
long-term cyclic loading, which has been in-
vestigated in the past (see, e.g., [10]), but such
a complex processes are difficult to investigate
purely experimentally and still not completely
understood. Therefore, this is an ideal use-case
for numerical modeling, where a virtual-lab en-
vironment can be set up and utilized to repeat
experiments virtually, having full control of the
input and measured values. This paper presents
the framework for establishing a virtual lab en-
vironment encompassing the mesoscale finite
element model generation on basis of CT-image
(section 2), discrete fiber formulation and the
computational model for fracture (section 3)
which are implemented into the open-source Fi-
nite Element program “Kratos Multi-physics”
[5]. The section 4 focuses on detailed anal-
ysis and modeling of the damage processes
in high-performance concretes at a mesoscale
level. Two specific cases are investigated: a
double-notched prismatic HPSFRC specimen
subjected to cyclic tensile loading and a cylin-
drical HPSFRC specimen subjected to mono-
tonic compressive loading. These investigations
aim to unravel the role of interaction between
individual mesoscopic components in produc-
ing the complex macroscopic response, thereby
enhancing our understanding and interpretation
of experimental results.

2 CT-IMAGE-BASED MODEL GENER-
ATION

In order to study the fracture processes
within a virtual laboratory environment, it is
essential to faithfully simulate the mesoscale
characteristics of the concrete specimen. The
main task involves capturing the heterogene-
ity in stiffness caused by coarse aggregates, as
most of the damage processes at this scale are
majorly influenced by it. To this end, a compu-
tational tomography (CT) scan was performed
on a small cylindrical specimen with a diameter
�39.56mm and a height h = 35.42mm. Utiliz-
ing the resulting 3D image (see Figure 1a), a
finite element mesh including coarse aggregate,
fiber and mortar matrix phases was generated
for further analysis and investigation.

2.1 Modeling the aggregates
The first step of the model generation is im-

age processing, during which the aggregates are
segmented from the original CT image. The
image thresholding technique proved very ef-
fective for obtaining a preliminary segmenta-
tion of the aggregates, represented by the set
of voxels in the original image corresponding
to aggregates (Figure 1b). Such segmentation
usually requires further processing due to noise
in the CT image and the possibility that some
aggregates might be ”touching” (sharing vox-
els). Therefore, we refine the segmentation by
applying image processing tools such as image
erosion and dilation. Then by applying a wa-
tershed transformation [11], we can obtain a
separate representation for each aggregate (Fig-
ure 1c). The next step is to convert the image
into geometry by a suitable triangulation tech-
nique. We start by creating the geometry of in-
dividual aggregates. A point is created on the
corner of every voxel of the aggregate. Then the
convex hull triangulation of these points [12] is
obtained, which encloses the aggregate and rep-
resents a good approximation of its surface ge-
ometry (Figure 1d). To generate the mesh, the
geometry of the matrix has to be defined, which
is, in this case, a cylinder. The aggregates are
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Figure 1: Stages of generating the computational model: a) Original CT image of an actual specimen with 4
phases: fibers (black), aggregates (dark grey), mortar matrix (grey), and air pores (light grey). b) Preliminary

segmentation of the aggregates. c) Separated segmentation of the aggregates. d) Surface triangulations of
individual aggregates. e) Final tetrahedral mesh with two sets of elements representing aggregates (dark grey)

and mortar (light grey).

introduced to the cylinder by applying Boolean
operations on both geometries: aggregates and
a cylinder. The resulting geometry is meshed
with tetrahedral elements of user-defined size
and order. Figure 1e shows the mesh of two sets
of elements, representing two different phases
(aggregates in dark grey and mortar in light
grey). Boolean operations and mesh generation
are performed using open-source geometry and
mesh processing tool gmsh [13].

2.2 Modeling the fibers

Similar to the case of aggregates, a prelimi-
nary segmentation of fibers is obtained through
image thresholding followed by image refine-
ment. Unlike the aggregates, fibers are more
prone to clumping and forming clusters of over-
lapping fibers (Figure 2a). However, water-
shed transformation cannot separate the over-
lapping fibers, as minor dents or noise along
the length of a single fiber trigger the watershed
transformation to falsely split the fiber. Hence,
we propose the following algorithm to separate
the clusters and reconstruct each fiber. First,
we skeletonize the segmented voxels that rep-
resent fiber material. Then we can identify the
branch points (in blue) (Figure 2b). By remov-
ing the branch points, we separate the cluster
into individual pieces of fibers (Figure 2c). To
reconstruct the actual fibers, we compute the
orientation vector of each piece, then by com-
paring the orientations of neighboring pieces,
it can be identified whether two pieces belong

to the same fiber or not. Finally, assuming the
fibers are straight, a line connecting the assem-
bled pieces’ endpoints defines the fiber (Fig-
ure 2d). The lines representing the fibers are im-
ported into the Finite Element analysis software
where they are discretized with linear Timo-
shenko beam elements, assigned the appropri-
ate material properties, and embedded into the
background mesh.

3 MODEL FORMULATION
In this work, two modeling strategies are

presented. In one, concrete is assumed homo-
geneous, whereas the fibers are discretely re-
solved, and in the other, a full mesoscale rep-
resentation, including explicit representation of
coarse aggregates, mortar matrix, and fibers has
been adopted (see Section 4).

3.1 Discrete Crack Model
Depending on the resolution, the matrix

material (concrete or mortar) is assumed to
be a homogeneous continuous medium, dis-
cretized by solid tetrahedral finite elements
with four nodes (T4), assumed to behave in
a linear elastic manner. Cracking of the
matrix is modeled discretely using the cohe-
sive zero-thickness interfaces elements as in
[6, 14, 15]. The zero-thickness interface el-
ements are inserted between solid elements
and they represent crack surfaces. The inter-
face element kinematics are defined accord-
ing to the local coordinate system x’-y’-z’
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Figure 2: Stages of reconstructing fibers: a) An initial segmentation of a cluster of four overlapping fibers. b)
Skeletonization of the segmented fiber voxels. Branch points are marked in blue. c) Splitting fibers into
segments at intersection points. d) Reconstructed fibers are represented by straight lines connecting the

endpoints of segmentation pieces that belong to their corresponding fiber.

and node numbering as illustrated in Figure 3.

Figure 3: Definition of the global and local
coordinate systems and node numbering convention

for a linear zero-thickness interface element.

The local coordinate x’ always points in direc-
tion of the normal (n) to the middle surface of
the interface element and the coordinates y’ and
z’ are defined so that they lie in the plane of the
middle surface, parallel to arbitrary defined unit
vectors t and s, satisfying the relation n = t×s.
The crack opening in the local coordinate sys-
tem is defined as:

[[u]]′ = R[[u]], (1)

where R is the rotation matrix, and [[u]] = Nuu
is the crack opening vector in the global coor-
dinate system, obtained by a product of nodal
displacements (u) and matrix containing shape
functions (Nu) of the interface element (see
e.g., [2] for details). The relationship between
traction vector (in local coordinate system of
the interface element) acting on the middle sur-
face of interface element (t′c, subscript c denot-
ing cohesive) and the continuum stress tensor

(σ) is defined as follows:

t′c =

tcx′

tcy′
tcz′

 = R(σ · n). (2)

The failure surface in the traction space, illus-
trated in Figure 4 is defined as:

F̂c(t, qc) = t̄c − qc ≤ 0, (3)

where t̄c(t) =
√

t2cx′ + 1
β2 (t2cy′ + t2cz′) is the

effective traction [14], and qc(αc,max) is the
strength of the material point, depending on the
stress history through αc,max. The softening law
qc(αc,max) is defined by the expression:

qc(αc,max) = ftue
− ftu

GF,I
(αc,max)

, (4)

where ftu is the tensile strength, GF,I is the frac-
ture energy for mode I cracks, and αc,max =
max(αc(t))

t∈[0,T ]

is the maximal value of αc =√
[[ux′ ]]2 + β2

κ2 ([[uy′ ]]2 + [[uz′ ]]2) experienced by
the material point from the beginning of the
simulation (t = 0) to the current time (t = T ).
The parameters β and κ appearing in the above
expressions denote the values of the ratio of
shear to tensile strength (β = fsu

ftu
) and the ra-

tio of fracture energies in mode II and mode I
(κ =

GF,II

GF,I
), respectively [15]. Consequently,

the damage parameter is defined as:

dc = 1− qc
Kcαc,max

, (5)

with Kc being the penalty parameter that
ties the undamaged surfaces of the interface
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element together, and gets fully recovered
upon closure of the crack. The loading-
unloading behavior is illustrated in Figure 5.

Figure 4: Failure surface defined in traction space
(see axes convention in Figure 3). After damage is
initiated, the failure surface gradually shrinks to the
frictional cone whose inclination is defined by the

friction coefficient µ.

Figure 5: The exponential softening law with
unloading/reloading hysteresis.

In addition to cracking, the processes of fric-
tional sliding between crack faces and incom-
plete closure of cracks majorly influence the
overall macroscopic response in terms of force-
displacement diagrams. These processes are in-
cluded through additional terms conditionally
appearing in the traction-separation law. The
frictional sliding occurs when already initiated
cracks are closed and experience compressive
and shear stresses. Figure 6 illustrates three
stages of crack development (intact, bridging
and completely open crack). By bridging, it is
assumed that the separation between the crack
faces is not yet complete, but there are some
particles and matrix ligaments that still provide
residual strength to the crack. The degradation
of this residual strength is modeled by the expo-
nential softening law, defined by the Eqs. 4 and

5. We assume that the frictional sliding can only
occur between the crack faces where the dam-
age has already occured, meaning that we use
the damage parameter dc to denote the fraction
of the interface element that has already been
fully cracked. Hence, the frictional contribution
is defined as:

tf ′ = Kc

 0
[[uy′ ]]− [[uy′ ]]p
[[uz′ ]]− [[uz′ ]]p

H([[ux′ ]]), (6)

where H([[ux′ ]]) is the friction activation func-
tion (Heaviside function), such that H([[ux′ ]]) =
1, when [[ux′ ]] ≤ 0, and H([[ux′ ]]) = 0 otherwise.
Note that the case [[ux′ ]] < 0 is physically not
admissible, however, due to use of penalty con-
tact enforcement, it is possible that in numeri-
cal analysis small penetration inversely propor-
tional to the value of the penalty parameter (Kc)
occurs. As can be seen from Eq. 6, the fric-
tion is modeled using the framework of plastic-
ity. The frictional yield function (g) is defined
as:

g(tf ′) = ∥tf ′∥ − µ∥⟨−tcx′⟩∥, (7)

where ⟨.⟩ denotes Macaulay bracket. The fric-
tional sliding problem is essentially 1D prob-
lem, so for the case of slipping (g > 0), evolu-
tion of plastic strains can be solved in a closed
form by rephrasing the meaning of the frictional
slip multiplier ˆ̇γf = γ̇f/∥tf ′∥, as proposed in
[16].

Figure 6: Cohesive crack model (left):
distinguishing intact, partially damaged, and

completely damaged part. Crack closure model
(right): Contact between the asperities is indicated

by the red stars in the illustration [6].
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The final component of the constitutive
model is the submodel for incomplete crack clo-
sure. The basic idea is illustrated in Figure 6.
The cracks in concrete are rough, and many
small particles contaminate the crack surface.
Upon closure, these asperities come into contact
before the crack is nominally closed, resulting
in partial recovery of the stiffness. After cer-
tain level of stress (σcl) has been achieved, the
sliding between these asperities activates, and
the rough crack surfaces slide until they fit with
each other. This is modeled using 1D plastic-
ity with two distinctive yield functions for up-
per and lower stress:

h1 = tx′ ≤ 0

h2 = −tx′ + σcl ≤ 0, (8)

where σcl is the closure stress that needs to be
overcome before the crack can be closed. The
value of σcl naturally depends on the current
crack opening, since for very large openings
there should be no resistance to closure, and
for very small openings the resistance to clo-
sure is high. This is controlled by a state equa-
tion σcl = σref [[ux′ ]]ref/([[ux′ ]] + b[[ux′ ]]ref ) [2],
with σref and [[ux′ ]]ref are material parameters,
and b is a very small number (∼ 10−5) to avoid
division by zero. The closure traction (tcl′) de-
veloping inside of the crack during the process
of closure manifests itself as a hysteresis in the
force-displacement response (see Figure 5) and
is calculated as (see [2] for more details):

tcl′ = Kc

[[ux′ ]]− [[ux′ ]]p
0
0

 . (9)

The traction acting on the middle surface of the
interface element is, finally, defined as:

t′ = (1−dc)Kc

 [[ux′ ]]
β2

κ
[[uy′ ]]

β2

κ
[[uz′ ]]

+dc(tf ′+tcl′). (10)

The simulations are fairly expensive because
they involve duplication of the nodes between
solid elements where interfaces are inserted.

Typically, the final mesh, where interface ele-
ments are inserted between all solid elements,
contains 4-6 (2D) and 8-12 (3D) times more
nodes than the original tetrahedral mesh. To al-
leviate this issue, we implemented an adaptive
insertion algorithm [17] that inserts interface el-
ements on-the-fly, during simulation, only in
the needed locations shortly before the fractur-
ing is initiated. The insertion is activated when
the criterion that the effective traction is greater
than a portion of tensile strength is fulfilled:
t̄c(t) ≥ ωftu, where ω is the insertion factor
(typically 0.6-0.8) and ftu is the tensile strength.

3.2 Discrete Fiber Model

The fibers in this work are modeled ex-
plicitly as linear Timoshenko beam elements
[18]. A reduced integration scheme with
a single Gauss point alleviates the shear
locking [19] inherent to this element’s for-
mulation. Additionally, the computational
cost is reduced, which is crucial when deal-
ing with a large number of explicit fibers.

Figure 7: Definition of the local (x’–y’–z’) and
global (x–y–z) axes of the linear Timoshenko beam

element.

The linear Timoshenko beam elements in 3D
have six degrees of freedom (DOFs) per node.
These are three translations (ux, uy, and uz)
and three rotations (φx, φy, and φz), all defined
in the global coordinate system. The general-
ized strains are calculated from displacements
and rotations according to [18]. The fibers are
bridging open cracks due to relatively large slid-
ing of the crack faces, and therefore experience
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large deformations that lead to plastic hinge for-
mation, which affects the fibers’ crack-bridging
properties. A 3D constitutive law is imple-
mented at integration points of the fiber cross-
section and these stresses are then integrated to
obtain the generalized stresses or stress resul-
tants (Nx, Qy, Qz, Mx, My, Mz). Specifically,
an elastoplastic law of Von-Mises type with ex-
ponential isotropic hardening has been imple-
mented for modeling steel fibers. The yield
function is defined as:

f =

√
3

2
σdev : σdev−σy−(σinf−σy)(1−e−ηα),

(11)
where σdev is the deviatoric part of the total
stress tensor σ, σy is the initial yield stress, σinf

is the final yield stress, η is the material param-
eter that controls the nonlinear hardening slope,
and α is the strain-like internal variable. The
flow rule is assumed associative, hence the evo-
lution of plastic strains is defined as:

ε̇p = γ̇
∂f(σ, α)

∂σ
, (12)

and the evolution of the strain-like internal vari-
able α is:

α̇ =

√
2

3
γ̇, (13)

with γ̇ being the plastic slip multiplier. The
above equations and Karush-Kuhn-Tucker opti-
mality conditions are solved using the standard
radial return map procedure (see, e.g., [24]).
Due to the modeling assumptions of the beam
theory, there are additional constraints that the
stress tensor needs to satisfy, namely, the stress
components in the local coordinate system of
the beam element σy′y′ , σz′z′ , and τy′z′ need
to be zero (see Figure 7 for axes convention).
These constraints are enforced using an itera-
tive procedure proposed by Klinkel and Govin-
djee [3] and will be omitted here for the sake of
brevity.

3.3 Bond between Fibers and Solid ele-
ments

To establish a connection between the fibers,
which are discretized by linear Timoshenko

beam elements, and the background finite ele-
ment mesh of the bulk material, a penalty-based
frictional tying algorithm is utilized. First, a
search for every fiber is performed to find on
which solid element it lies (note that it can lie
also on the surface, edge, or vertex shared by
multiple solid element, in which case it gets
tied to all these solid elements) and the isopara-
metric coordinates ξ of the fiber node point are
evaluated for this element. Next, a bond ele-
ment is created to establish the relationship be-
tween the background solid element, the fiber
node, and the segments of the fiber passing
through the node. This bond element contains
information about the solid element, fiber node,
and the relevant fiber segments. Using this in-
formation, a rotation matrix Rbond is calculated
for the bond. The point of the solid element that
coincides with the fiber node is connected to the
fiber node using three stiff springs, facilitating
the coupling between the two elements. These
springs are oriented to align with the local co-
ordinate system of the bond. Among the three
springs, the one parallel to the fiber is equipped
with an elastoplastic law, while the two lateral
springs are elastic. Knowing the shape func-
tions (N(ξ)) and the nodal displacements (û) of
the solid element, the relative slip is calculated
as follows:

[[u]]′bond = Rbond(usolid(ξ)− ufiber), (14)

where usolid(ξ) = N(ξ)û and ufiber is the dis-
placement vector of the fiber node. The compo-
nent of [[u]]′bond in the x’ direction represents the
slip between the fiber and the solid matrix and
it is denoted as s. The bond-slip law illustrated
in Figure 8 is given as follows:

τy =


τmax + µtN , s ≤ s0

τmax + µtN , s0 < s ≤ s1

τ0 + (τmax − τ0)e
s1−s
sref + µtN , s > s1,

(15)
where tN =

√
t2y′,bond + t2z′,bond is the lat-

eral pressure that the fiber is exerting on the
matrix through two lateral (elastic) springs.
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Vladislav Gudžulić, Koussay Daadouch and Günther Meschke

Figure 8: Illustration of the fiber bond-slip law
with interpretation of material parameters.

4 NUMERICAL SIMULATIONS ON
THE LABORATORY SCALE

This section presents the validation exam-
ples for the proposed modeling framework, as
well as the discussion of the obtained com-
putational results. Two experimental setups
have been numerically reanalyzed: a double-
notch prismatic HPSFRC specimen subjected
to cyclic tension and an HPSFRC cylindri-
cal specimen subjected to monotonic compres-
sion. In both analyses, the Dramix OL 6/0.16
short steel fibers have been used. Their ge-
ometrical and material properties are given
in Table 1. For both simulations, the bond
properties listed in Table 2 have been used.

Table 1: Properties of Dramix OL 6/0.16 fibers

Material Property Fibers
Length [mm] 6

Diameter [mm] 0.16
Yield strength (σy) [MPa] 2200

Ultimate strength (σinf ) [MPa] 2600
Hardening exponent (η) [MPa] 10

4.1 Notched prismatic concrete specimen
under cyclic tension

The experimental data for this example have
been published in [6], and here the numer-
ical reanalysis of the boundary value prob-
lem, using the improved model for discrete
fibers, is presented. The double-notched pris-
matic specimen of dimensions 140 × 40 ×
40mm3 with two notches on the side (height
of 5mm and depth of 10mm), illustrated in
Figure 9, has been subjected to displacement-
controlled cyclic tensile loading. The material
properties of HPSFRC are listed in Table 3.

Table 2: Properties of the fiber-HPC bond

Material Property Bond
τmax [MPa] 4.0
τ0 [MPa] 8.0
s0 [mm] 0.0004
s1 [mm] 0.0004
sref [mm] 0.1

Friction coefficient (µ) [-] 0.6

Figure 9: Dimensions of the double-notched prism
specimen in mm. The displacement degrees of

freedom of the bottom and the top surface are fixed
in all directions, and the displacement in vertical

direction is prescribed at the top surface.

The loading protocol in the numerical sim-
ulation is set up in the following way. The
specimen was subjected a monotonic tensile
loading until the first crack appeared. After-
wards, the load was reduced to 10% of the
nominal tensile strength, and the change in
length (∆l) was recorded. The vertical dis-
placement was then subsequently reapplied to
the upper end of the specimen until the crack
mouth opening displacement value measured
at the notch area matched CMOD1=2∆l. The
process of controlled loading, causing crack
opening, and unloading was then repeated un-
til the final crack mouth opening displacement

8
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reached CMODn = 10∆l. Figure 10 illus-
trates the experimental and simulated force-
crack mouth opening displacement (CMOD) re-
sponses. After reaching the peak load, a sig-
nificant drop in load occurs, followed by sta-
bilization at a residual level. This drop cor-
responds to the development of a crack in the
notched area of the concrete specimen (see Fig-
ure 11). Once the crack is fully formed, the
fibers contribute to the residual strength. Both
in experiments and the simulation, it is no-
ticeable that there is relatively small hystere-
sis during loading/reloading cycles. This can
be attributed to the fact that the fibers primarily
provide the residual carrying capacity, and the
dissipation is mainly caused by the sliding of
fibers back and forth within the fiber channels.

Figure 10: Force-CMOD response of the
double-notched prismatic HPSFRC specimen

subjected to cyclic tensile loading.

Figure 11: A single crack formed at the notch of
the prism. The fiber bridge the crack faces and
provide the residual strength to the specimen.

Deformations are scaled tenfold.

4.2 Small cylindrical specimen under com-
pression

In this subsection, a mesoscale finite ele-
ment model of a cylindrical specimen with di-
mensions �39.56mm, h = 35.42mm, generated
from the CT-Image using the methodology de-
scribed in section 2, was numerically analyzed.
The geometry of the considered boundary value
problem is shown in Figure 12. The degrees of
freedom of the top and bottom surfaces of the
cylinder are completely fixed, and the displace-
ment in the vertical direction is prescribed on
the top surface. The material parameters of all
constituents used in simulation are provided in
Table 3. Note that the values were taken from
the literature where the measurements were un-
available. In this example, only the aggregates
that would pass through the sieve of the size
of 2mm were explicitly resolved, corresponding
to the volume fraction of 26.7%. Therefore, to
match elasticity parameters to the macroscopi-
cally measured values, Young’s modulus value
for basalt was chosen as 57.5 GPa, and the
Poisson’s ratio was selected as 0.25, which are
within the range of measured values in [23]. It
should also be noted that the interface transition
zone (ITZ) between coarse aggregates and mor-
tar matrix is also explicitly modeled, however,
due to lack of experimental data, the material
properties of ITZ are taken same as for the mor-
tar matrix.

Figure 12: Dimensions of the cylindrical specimen
in mm. The displacement degrees of freedom of the

bottom and the top surface are fixed in all
directions, and the displacement in vertical
direction is prescribed at the top surface.
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Table 3: Material properties for aggregates and high-performance mortar, and high-performance concrete

Material Property Basalt Mortar (HPC-02) Concrete (HPC-08)
Tensile strength (ft) [MPa] 14.0 [23] 5.7 6.2

Young’s modulus [MPa] 57500.0 39183.0 43224.4
Poisson’s ratio [-] 0.28 [23] 0.2 0.21
Fracture energy [ N

mm ] 0.125 0.05 0.1
Friction coefficient [-] 0.7 0.7 0.7
Ref. closure stress [MPa] - - 6.2
Ref. crack opening [mm] - - 0.004

The comparison between the experimentally
measured and simulated force-displacement re-
sponse is shown in Figure 13. Due to irreg-
ularities at the top and bottom surfaces of the
specimen, the contact between the loading plate
and the specimen was gradually established, re-
sulting in a nonlinear loading path. Hence,
the experimental diagram was shifted so that
the zero displacement corresponds to the point
where the contact was fully established. Nev-
ertheless, the agreement between the experi-
mental and numerical results can be considered
satisfactory, considering that the simulation re-
sults emerge from the interactions between el-
ementary components (aggregates, fibers and
the mortar matrix). It can be observed that
the experimental peak load occurs at the dis-
placement of 230µm, which corresponds to a
strain of 5.81 ‰, a ductility that surpasses the
usual value for plain concrete of ∼ 2–3‰ [21],
clearly a consequence of the presence of short
steel fibers. The same effect is observed in nu-
merical simulation with the peak load occur-
ring at around 200µm, corresponding to a strain
of 5.06‰. The numerical simulation showed
that most of the short steel fibers bridging the
open cracks have fully formed plastic hinges,
dissipating the energy while slowing the crack
growth and delaying the localization process.

Figure 13: Comparison of the experimental and
simulated force-displacement diagrams for the

cylindrical HPSFRC specimen under monotonic
compressive loading.

Figure 14 shows the cracking pattern at the
last step before the numerical divergence oc-
curred. The formation of the hourglass fail-
ure mode is evident, influenced by the strong
multiaxial stress caused by fixed boundary dis-
placements at the specimen’s top and bottom
surfaces. The radial extent of spalled concrete
reaches approximately a quarter of the spec-
imen’s measured radius. The cracking pat-
tern confirms that the numerical simulations
accurately capture the failure mode, with ini-
tially tension-opening vertical or slightly in-
clined cracks influenced by the mesostructure
topology. As the ultimate load is reached, de-
formations localize due to shear sliding of these
cracks under high vertical compressive stress.

10
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Figure 14: Cracking pattern of the cylinder
subjected to monotonic compression at the last

converged step. Deformations are scaled tenfold.

5 CONCLUSIONS AND OUTLOOK
This paper presents a comprehensive virtual-

lab framework that utilizes 3D CT-based im-
ages to generate finite element models and solve
boundary value problems. The two numeri-
cal simulations showcased in this work demon-
strate the utility of the virtual lab concept in en-
hancing the interpretation of experimental data.
By examining the interactions between indi-
vidual components, a deeper understanding of
the complex material behavior of HPSFRC is
achieved. However, there are areas for im-
provement. For instance, simulations involv-
ing complex multi-axial stress states, such as
the mesoscale analysis of concrete cylinders un-
der compression, encountered convergence is-
sues beyond the peak load. Additionally, the
virtual lab should incorporate models for creep
and fatigue behavior, which are currently being
developed, to investigate specimens subjected
to long-term loading.

6 ACKNOWLEDGMENTS
Financial support for this work was provided

by the German Research Foundation (DFG)
within the Priority Program 2020 ”Cyclic de-
terioration of High-Performance Concrete in an
experimental-virtual lab” (Project 353819637).
This support is gratefully acknowledged. The
authors also want to thank Mr. Niklas Schäfer,
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