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Abstract: In this paper, a novel approach is introduced for handling orthotropic plasticity coupled 

with damage, using second gradient formulations based on several directional diffusion tensors. This 

method automatically identifies the crack location and opening through the curvature of the non-local 

profiles of principal plastic strains. The paper includes an application demonstrating the numerical 

objectivity of the obtained solution. 
 

1 INTRODUCTION 

The durability of concrete structures relies 

on various factors, one of which is the crack 

opening. Cracks in concrete structures create 

pathways for the ingress of fluids and 

aggressive chemicals, such as chloride or 

carbon dioxide, leading to conditions able to 

initiate reinforcement corrosion. International 

standards limit crack openings to mitigate this 

issue. While design standards offer empirical 

relationships for common structural elements 

like beams to assess crack openings, applying 

these relationships to non-conventional 

structures, such as containment structures of 

nuclear plants or dams, remains challenging. 

The Finite Element Method (FEM) is an 

interesting approach used in this work to predict 

crack openings in such complex structures. 

Accurately determining crack openings 

allows for better modeling of the hydro-

mechanical behaviour of concrete, leading to 

improved assessments of its durability. 

Numerous studies have shown that 

permeability evolves with the opening of 

localized cracks [1]–[4]. Managing crack 

opening and reclosing is also crucial during 

cyclic loading of cracked structures, such as 

dealing with seasonal variations in water tank 

levels behind a dam or the effects of seismic 

events and wind. During these phases, the 

stiffness of concrete becomes anisotropic, with 

stiffness being lost in the direction of crack 

opening and recovered when cracks reclose. To 

account for this orthotropic and unilateral effect 

of cracks on mechanical behaviour, Finite 

Element models can employ an anisotropic 

damage model coupled with plasticity. This 

type of model captures the strain localization 

phenomena interpreted as a crack formation. 
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When implementing this type of model in 

finite element software using linear 

interpolation functions for the finite elements, 

the local method based on Hillerborg's principle 

[5] can be used to ensure the dissipation of the 

correct amount of fracture energy [6]. However, 

if quadratic finite element interpolation 

functions are used, the implementation of this 

method becomes less straightforward. As a 

result, alternative methods like XFEM [7]–[10], 

EFEM [11], [12] or non-local methods have to 

be used. Among non-local methods, the integral 

non-local method [13] and the second gradient 

method [14]–[18] are both based on the works 

of [19]. 

In this work, it is proposed to extend the non-

local method from the classical framework of 

isotropic state variables to second-order 

tensorial variables. For this purpose, the 

multivariable Helmholtz formulation, as 

clarified in [20], is adapted to consider several 

phase-fields. Two numerical implementation 

methods are possible: (1) each term of the 

plastic strain tensor is treated separately, 

resulting in six scalar differential equations of 

the Helmholtz form, to which the non-local 

method is applied directionally using 

anisotropic diffusion matrices expressed in the 

fixed coordinate system; (2) only three 

diffusion matrices need to be computed, each 

one associated with one principal direction of 

the plastic strain tensor. The second method 

reduces the number of Helmholtz problems to 

three, but it requires reassessing the diffusion 

matrices at each sub step due to the potential 

rotation of principal directions, which increases 

computational time. The three or six equations, 

depending on the selected method, are solved 

numerically using a non-local solver nested in 

the global equilibrium convergence loop. 

Furthermore, an analytical analysis of the 

directional Helmholtz formulation reveals that 

the non-local principal strains can directly 

predict localized crack openings and their most 

probable positions. After clarifying the method, 

one application is presented to discuss the 

advantages and limitations of the non-local 

tensorial formulation, particularly concerning 

the determination of localized crack openings 

and positions. 

2 GENERAL PRINCIPLES 

In this work, the general principles are 

described assuming radial loading. 

Nevertheless, the method remains easily 

transposable for any type of loading. The total 

strain increment in a principal direction 𝑗 =
(1,2,3) is denoted Δ𝜀𝑗 and expressed in 

Equation (1): 

Δ𝜀𝑗 = Δ𝜀𝑗
𝑒𝑙 + Δ𝜀𝑗

𝑝𝑙 (1) 

where Δ𝜀𝑗
𝑒𝑙 and Δ𝜀𝑗

𝑝𝑙
 are the elastic and plastic 

strains increments, respectively. 

The effective stress increment Δ�̃�𝑖 is related 

to the elastic strain increment and the Hooke 

tensor ℍ𝑖𝑗 (Equation (2)): 

Δ�̃�𝑖 = ℍ𝑖𝑗 ∙ Δ𝜀𝑗
𝑒𝑙 (2) 

A damage variable was introduced by [21] 

for isotropic states. In this paper, an anisotropic 

damage is considered. The principal values of 

tensile damage 𝐷𝑖
𝑡 are introduced in Equation 

(3): 

𝜎𝑖 = �̃�𝑖
+ ∙ (1 − 𝐷𝑖

𝑡) + �̃�𝑖
− (3) 

where �̃�𝑖
+ and �̃�𝑖

− are the tensile and 

compressive stresses, respectively, in a 

principal direction 𝑖 = (1,2,3). 

2.1 Tensile damage law 

The principal tensile damage value 𝐷𝑖
𝑡 is 

related to the localized crack opening by the 

damage evolution law (Equation (4)): 

𝐷𝑖
𝑡 = 1 − exp (− (

𝑤𝑖
𝑝𝑙,𝑚𝑎𝑥

𝑤𝑘𝑡
)

𝑚

) (4) 

where 𝑤𝑖
𝑝𝑙,𝑚𝑎𝑥

 is the maximal crack opening in 

a principal direction of tension (Equation (5)). 

In Equation (4), the damage value must not 

decrease in order to respect the second principle 

of thermodynamics. 

𝑤𝑖
𝑝𝑙,𝑚𝑎𝑥 = max

𝑡
(𝑤𝑖

𝑝𝑙) (5) 

where 𝑡 is the kinematic time for loading and 

𝑤𝑖
𝑝𝑙

 is the crack opening. 

In addition, in Equation (4), 𝑤𝑘𝑡 and 𝑚 are 

parameters: 𝑤𝑘𝑡 controls the fracture energy 
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and 𝑚 allows to control the shape of the post-

peak branch of the behaviour law, as illustrated 

in Figure 1. 

 

Figure 1: Stress-strain behaviour law implemented at 

Gauss integration points for different values of 𝑚 

2.2 Non-local formulation and crack 

openings assessment 

The non-local method used in this model is 

the second gradient originally proposed by 

[14]–[18] in a context of isotropic state context. 

In this work, the method will be applied 

successively to each principal plastic strain 𝜀𝑖
𝑝𝑙

 

in order to obtain a one-dimensional diffusion 

in each principal direction of tension (Equation 
(6)). 

−div (�̿� ∙ 𝑔𝑟𝑎𝑑̅̅ ̅̅ ̅̅ ̅(𝜀�̂�
𝑝𝑙)) = 𝜀𝑖

𝑝𝑙 − 𝜀�̂�
𝑝𝑙 (6) 

where 𝜀�̂�
𝑝𝑙

 is the non-local plastic strain in a 

principal direction of tension and �̿� a diffusion 

tensor (Equation (7)). 

�̿� =
𝑙𝐷

2

2
∙ (𝑒𝑖 ⊗ 𝑒𝑖) (7) 

where 𝑙𝐷 is the diffusion length of the non-local 

method. The formulation in Equation (6) 

allows the local plastic strain to be diffused 

along a main tensile direction in proportion to 

𝑙𝐷. 

The conservative nature of the Helmholtz 

formulation of Equation (6), which considers a 

zero flow boundary condition at infinity, leads 

to the solution shown in Figure 2. 

 

 

Figure 2: Local and non-local plastic strains along a 

principal direction 𝑥 associated to the principal value 

𝜀𝑖
𝑝𝑙

, (a) theorical solution for a Dirac source and (b) 

solution for a finite source 

In this work, the local source is assumed to 

occur in a localized region, whose width is 

equal to 𝑙𝑠. During the localization process, the 

plastic strain source is localized, leading 

through Equation (6) to a non-local plastic 

deformation field. This field is maximal at the 

position of the source, as presented in Figure 3.  

By considering in Equation (8) that the local 

plastic strain is constant on a finite width 𝑙𝑠: 

𝜀𝑖
𝑝𝑙(𝑥) = {𝜀𝑖

𝑝𝑙 ∀ 𝑥 ∈ [−
𝑙𝑠

2
;
𝑙𝑠

2
]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8) 

the crack opening can be expressed by Equation 
(9): 

𝑤𝑖
𝑝𝑙 = 𝜀𝑖

𝑝𝑙 ∙ 𝑙𝑠 ≈ √2 ∙ 𝑙𝐷 ∙ 𝜀�̂�
𝑝𝑙,𝑚𝑎𝑥 (9) 

The crack opening corresponds to the 

integral of the non-local strain along a principal 

direction of tension and depends on two 

variables: the diffusion length 𝑙𝐷 and the 

maximum value of the non-local strain 𝜀�̂�
𝑝𝑙,𝑚𝑎𝑥

. 

According to the literature, the crack 

opening is located where the non-local strain 

value is maximal [22], [23]. In this formulation, 

the analytical solution shows that the source is 

located where the second derivative of the non-

local strain is negative, as illustrated in Figure 

3. This allows automatically finding the 

position of the crack and its opening. 
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Figure 3: Determination of the crack position and its 

opening in the structure 

Moreover, within the finite element 

framework, the diffusion length of the non-

local method 𝑙𝐷 must be chosen to guarantee a 

satisfactory level of accuracy of the numerical 

approximation of the solution of Equation (6). 

𝑙𝐷 can be defined by the user according to the 

sizes of the mesh and the structure. On the one 

hand, a minimum of six finite elements must be 

included in the non-local length 𝑙𝐷 as suggested 

in [24]. On the other hand, the diffusion length 

must have a small value in comparison to the 

size of the structure to avoid undesirable 

boundary effects. 

2.3 Local source of plastic strain 

The yield surface describing a plasticity 

yield is defined in the principal directions of 

tension. In this model, a set of three orthogonal 

stress criteria in the principal directions of 

tension is used to define an orthotropic Rankine 

multi-criterion, as explained in [6]. 

𝑓𝑖
𝑅 = �̃�𝑖 − �̃�𝑡 ≤ 0 (10) 

where 𝑓𝑖
𝑅 is the yield function and �̃�𝑡 the tensile 

strength of the material. The local plastic strain 

increment Δ𝜀𝑖
𝑝𝑙

 in the principal direction of 

tension 𝑖 is defined in equation (11): 

Δ𝜀𝑖
𝑝𝑙 = Δ𝜆 ∙

𝜕𝑓𝑖
𝑅

𝜕�̃�𝑖

(11) 

where Δ𝜆 is the plastic multiplier. Finally, the 

loading-unloading conditions are the 

followings (Equation (12)): 

𝑓𝑖
𝑅 ≤ 0, Δ𝜆 ≥ 0, Δ𝜆 ∙ 𝑓𝑖

𝑅 = 0 (12) 

2.4 Fracture energy 

In this model, the same fracture energy in 

tension 𝐺𝑓𝑖
𝑡, expressed in Equation (13), must 

be dissipated whatever the mesh used.  

𝐺𝑓𝑖
𝑡 ≈ 𝑅𝑡 ∙ ∫ (1 − 𝐷𝑖

𝑡) ∙ 𝑑𝑤𝑖
𝑝𝑙,𝑚𝑎𝑥

∞

0

(13) 

By replacing 𝐷𝑖
𝑡 by its definition given in 

Equation (4) and calculating analytically the 

integral of the fracture energy, 𝑤𝑘𝑡 can be 

expressed in equation (14): 

𝑤𝑘𝑡 ≈
𝐺𝑓𝑖

𝑡 ∙ 𝑚

𝑅𝑡 ∙ Γ (
1
𝑚)

(14) 

where Γ is the Gamma function. Thus, for given 

values of 𝑚 and 𝑙𝐷, 𝑤𝑘𝑡 is evaluated in order to 

verify the fracture energy. 

The behaviour law implemented at each 

Gauss point defined in Equation (3) is plotted 

on Figure 4 for different values of 𝑙𝐷. 

 

Figure 4: Stress-strain behaviour of a Gauss point for 

various values of 𝑙𝐷 (𝑚 = 1) 

In this model, the non-local diffusion length 

𝑙𝐷 is not a material parameter. The only 

intrinsic material parameters are the Hooke 

coefficients, the tensile strength 𝑅𝑡, the fracture 

energy 𝐺𝑓𝑖
𝑡, and the brittleness exponent 𝑚. 

3 APPLICATION – UNIAXIAL 

LOADING TEST IN TENSION 

This application concerns a structure 

subjected to uniaxial loading in tension. This 

application deals with the ability of the model 

to regularize the structural response and to 

obtain mesh independent solutions, whatever 
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the interpolation functions used in the finite 

element model. This application highlights also 

the ability of the model to find the position of 

the localized crack and to assess its crack 

opening by itself, i.e. during the sub stepping 

process instead of after the calculus by 

postprocessing. 

3.1 Presentation of the test 

In this test, a uniaxial displacement is 

applied to a concrete bar discretized 

successively with linear 8-nodes and quadratic 

20-nodes cubic finite elements, as illustrated in 

Figure 5. The imposed uniaxial displacement 

varies linearly from 0 to 100 𝜇𝑚. The 

particularity of this structure is its varying 

geometry along the loading axis to provoke a 

localized crack. The structure has a 

symmetrical geometry with only one element in 

the middle. When tensile strength is reached, 

only the finite element in the middle of the 

structure is supposed to be damaged. Different 

mesh discretizations have been used in 

calculations and results were compared. 

 

Figure 5: Schema of the concrete bar: 2D views with 

dimensions in meters (a) and boundary conditions (b) 

The material characteristics are presented in 

Table 1. 

 

 

 

 

 

 

 

Table 1: Material parameters of the concrete bar 

Parameter Notation Value Unit 

Young 

modulus 
𝐸 30 000 𝑀𝑃𝑎 

Poisson’s 

ratio 
𝜈 0.20 − 

Tensile 

strength for  
𝑅𝑡 3.50 𝑀𝑃𝑎 

Strain at 𝑅𝑡 𝜀𝑝𝑒𝑎𝑘,𝑡 1.17 ∙ 10−4 𝑚/𝑚 

Fracture 

energy in 

tension 
𝐺𝑓𝑡 9.00 ∙ 10−5 𝑀𝐽/𝑚2 

3.2 Results 

First, a series of tests was carried out by 

choosing different mesh sizes with a constant 

diffusion length 𝑙𝐷 (𝑙𝐷 = 25𝑚𝑚). Next, the 

computed responses of the model by choosing 

successively linear (𝐶𝑈𝐵8) and quadratic 

(𝐶𝑈20) finite elements are compared. All the 

simulated load-displacement curves are 

presented in Figure 6. It is worth noting that the 

load-displacement responses of the beam are 

reasonably mesh independent. As expected, the 

difference of responses obtained with quadratic 

finite elements between the finest and the 

coarsest meshes is smallest than the ones 

obtained with linear finite elements. 

 

Figure 6: Load-displacement behaviour of the bar for 

various mesh sizes with a constant value of 𝑙𝐷 and using 

𝐶𝑈𝐵8 and  𝐶𝑈20 finite elements 

Figure 7 shows the non-local plastic strain 

𝜀�̂�𝑥
𝑝𝑙 ≈ 𝜀1̂

𝑝𝑙
, the crack opening 𝑤1

𝑝𝑙 = √2 ∙ 𝑙𝐷 ∙

𝜀1̂
𝑝𝑙,𝑚𝑎𝑥

 and the tensile damage 𝐷1
𝑡 fields, 

plotted on a deformed mesh. As expected, the 

crack opening field shows clearly that the crack 
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is positioned in the central finite element. 

Moreover, the diffusion length 𝑙𝐷 has to be 

handle with care. As mentioned previously, if 

the 𝑙𝐷 value is too small, in other words, if there 

is not a minimum of six elements in 𝑙𝐷, the 

quality of the numerical response of the 

material will be degraded. On the contrary, if 

the 𝑙𝐷 value is too large in comparison to the 

structure size, boundary effects can appear. 

 

Figure 7: Non-local plastic strain tensor component 𝜀�̂�𝑥
𝑝𝑙

 

(a), crack opening 𝑤1
𝑝𝑙

 (b) and damage 𝐷1
𝑡  (c) plotted on 

the mesh of the deformed beam, corresponding to the 

last step computed in Figure 6 (61 𝐹𝐸 ; CUB8 ; 𝑙𝐷 =
25𝑚𝑚) 

4 CONCLUSIONS 

This study demonstrates the possibility of 

generalizing the non-local theory from the 

classical framework of the isotropic state 

variables to the second-order tensorial 

variables. The method, implemented in a finite 

element software, is based on a second gradient 

formulation with directional diffusion tensors. 

The orthotropic formulation of non-local 

plasticity coupled with damage offers several 

advantages compared to the isotropic non-local 

formulation. 

One principal advantage is the absence of 

plastic strain field diffusion in parts of the 

structure that are normally undamaged, which 

is not the case in the isotropic non-local 

formulation. This ensures that plastic strains are 

localized only in regions where damage has 

occurred, making the orthotropic formulation 

more accurate in representing localized 

damage. 

Another benefit is the facilitated assessment 

of crack position and opening. Analytically, the 

crack position corresponds to the zone where 

the curvature of the non-local strain is negative. 

Numerically, it corresponds to the zone where 

the local plastic strain exceeds the non-local 

one. This information allows for a precise 

determination of the location and size of the 

cracks. 

Once the crack has localized, the crack 

opening can be approximated by multiplying 

the non-local plastic strain by the diffusion 

length (𝑙𝐷) times √2. This approximation 

remains valid as long as the zone with negative 

curvature is small compared to the diffusion 

length (𝑙𝐷), which is satisfied when there are at 

least six elements within 𝑙𝐷. 

The localized crack openings are then used 

to calculate damages, which can be applied to 

the effective principal stresses to obtain 

macroscopic stresses. Importantly, the value of 

𝑙𝐷, which affects the softening behaviour of the 

material in tension at Gauss points, can be 

chosen independently by the users without 

altering the numerical results of the entire 

structure. 

A future perspective of this work involves 

computing the permeability of the material as a 

function of the crack opening. This would lead 

to the formulation of a poro-mechanical finite 

element method regulated by this non-local 

orthotropic formulation. Such an approach 

could provide valuable insights into the 

behaviour of materials with localized damages 

and contribute to more accurate predictions in 



Mathias Tricoche, Alain Sellier, Alain Millard, Pierre Morenon, Aurélie Papon, Etienne Grimal, Romain Tajetti 
Philippe Kolmayer and Simon Raude 

 7 

the analysis of concrete structures and their 

durability. 
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