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Abstract. An algorithm implemented in MATLAB combining particle swarm optimization (PSO)
and the phase field (PF) approach to fracture based on the finite element method is herein proposed to
address the fundamental issue of model parameters’ identification for phase-field fracture mechanics
simulations. This work sheds further light on the role of the internal length scale parameter lc, and
the proposed robust PSO-PF formulation has been applied to a series of uni-axial tensile tests of ABS
material with E and lc to be identified, and to three-point bending tests with E, Gc and also lc to
be identified. Results show that the optimal values of E and Gc are consistent in both tests. At the
same time, lc presents a significant dependency upon the test type and, therefore, it should always be
identified separately from uni-axial tests.

1 Introduction

The phase field approach to fracture is an
emerging computational technique for the sim-
ulation of complex crack paths in solids and
structures.

The development of numerical methods
within the Finite Element Analysis (FEA) to
predict fracture onset, propagation, and branch-
ing in materials and structures has been the
subject of intensive research since the 1970s.
Those methods are requested to tackle tech-
nical problems that analytical methods can-
not address. In this regard, the Cornell Frac-
ture Group [1] developed FEA software based
on linear elastic fracture mechanics (LEFM).
These methods were based on inserting singular
finite elements at the crack tip to approximate

the singular stress field and compute the stress-
intensity factors according to the displacement
correlation technique or the J-integral method.
Although efficient for 2D problems, the ex-
tension of the methodology to 3D geometries,
also with multiple materials, is quite complex
since the theoretical definition of the general-
ized stress-intensity factors and the implemen-
tation of the related computational procedures
require a significant effort [2].

Alternatively, Continuum Damage Mechan-
ics (CDM) models accounting for a smeared
crack representation [3] can address both crack
nucleation and propagation stages. To avoid
mesh dependency of local damage formula-
tions, integral-based nonlocal and gradient-
enhanced procedures have been proposed [4–
8]. Moreover, extended FE strategies with
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nodal kinematic enrichment (extended-FEM,
X-FEM) that rely on Partition of Unity Methods
(PUM) [9–11] and element enrichment formu-
lations (enhanced-FEM, E-FEM) [12–15] have
also seen a considerable development. These
methods present limitations for the simulation
of complex failure modes that require predict-
ing crack initiation, propagation, branching,
and coalescence from multiple points.

In this regard, the phase field (PF) ap-
proach to fracture proposed in [16] based on
Γ−convergence [17] presents several advan-
tages. The above approach incorporates a non-
local formulation that can retrieve the classical
energy-based Griffith criterion [18] as a limit
case when the internal length scale of the model
tends to zero. Significant progress has been
made regarding the numerical implementation
of the phase field approach to fracture in FEA
codes, see e.g. [19–21]. This methodology ap-
pears to be very promising in reproducing not
only the limit case of LEFM but also diffuse
damage scenarios depending on the choice of
the model parameters. It has been tested in
relation to real experiments on brittle PMMA
samples with notches and holes in [22]. Re-
sults have shown that the phase field approach
to fracture can closely reproduce the experi-
mental results not only in terms of the crack
pattern but also in terms of force-displacement
and local stress measures. In [22], parame-
ters’ identification for each type of simulated
test was conducted manually. Still, preliminary
results showed significant concerns, especially
for the popular AT2 phase field model [19, 23]
referred to as the standard Ambrosio-Tortorelli
model in the applied mathematics community
[24]. Specifically, the internal length scale of
the phase field approach was quite a complex
parameter to be identified.

The value of the peak traction in a simulated
uni-axial tensile test is affected by the choice
of the internal length scale of the phase field
model. A possible correlation between mate-
rial strength (σc) and the internal length scale
(lc) can be formally established, see [25], which
has led to the wide belief that lc estimated from

uni-axial tensile tests can be consistently valid
also for any other geometry and loading con-
ditions. This belief has been questioned in
[22], where manual identification of the inter-
nal length scale for all the conducted tests on
PMMA samples with different geometry and
loading conditions has shown that, especially
for the AT2 model, it is not possible to use the
value of the uni-axial tensile tests to reproduce
all the experimental trends accurately. This mo-
tivates the need to develop a robust identifica-
tion procedure to extract the optimal value of
the internal length scale directly from experi-
mental results. Thus, an automatic identifica-
tion procedure is required and can be applied to
evaluate the internal length scale parameter of
the phase field model directly from the exper-
imental data for conditions different from the
uni-axial tensile tests.

Therefore, in this work, we outline a robust
material parameters’ identification procedure
for the phase field approach to fracture based on
Particle Swarm Optimization (PSO). The reader
is referred to [26] for a detailed description of
PSO applied to phase field fracture and addi-
tional sensitivity tests of the method, to demon-
strate its robustness. The PSO heuristic ap-
proach has been demonstrated to be extremely
robust in the case of mechanical problems in-
volving multiple nonlinearities, as shown in
[27], such as plasticity and cohesive fracture.
Therefore it is considered an excellent candi-
date also for phase field diffuse damage. The
article is structured as follows: in Section 2,
the AT2 phase field approach is briefly outlined,
highlighting the issue of parameters’ identifica-
tion. Section 3 focuses on the proposed model
parameters’ identification procedure in relation
to a benchmark test related to PF fracture prop-
agation. Section 4 discusses the application of
the proposed methods to experimental data re-
lated to ABS specimens, showing how the algo-
rithm can automatically identify the mean and
the standard deviation of the phase field fracture
parameters for uni-axial and three-point bend-
ing tests. ABS material has been selected for its
importance in additive manufacturing and injec-
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tion molding applications.

2 The phase field approach to fracture
Let us consider a linear elastic continuum

domain Ω ⊂ RB in the reference configuration
with dimension B ∈ [1, 3]. A crack may nucle-
ate and propagate from already-existing notches
or stress-concentrated areas. The total poten-
tial energy functional of the continuum Ω pro-
posed by Francfort-Marigo [16] with a prospec-
tive evolving crack surface Γ is given by

Π(u, ϕ) =

∫
Ω

ΨE (ε(u), ϕ) dΩ︸ ︷︷ ︸
internal elastic energy

+

∫
Ω

ΨS (ϕ) dΩ︸ ︷︷ ︸
energy due to crack propogation

−
∫
Ω

bu dΩ−
∫
∂Ωt

t̄u d∂Ω︸ ︷︷ ︸
external loads

(1)

in which b and t̄ are body forces and boundary
traction, respectively. ΨE (ε, ϕ) is the internal
energy density function [20] defined as

ΨE (ε, ϕ) = g(ϕ)Ψ+
0 (ε) + Ψ−

0 (ε) (2)

where g(ϕ) = (1 − ϕ)2 + κp is the stress
degradation function dependent upon the phase
field damage variable ϕ, κp a small number to
avoid ill-conditioning of the stiffness matrix for
ϕ → 1. Ψ+

0 and Ψ−
0 are the tensile and compres-

sive energies respectively. Damaging the elastic
energy of the material occurs only due to tensile
stress states [28].

In the framework of the phase field regular-
ization [29], ΨS (ϕ) the fracture energy contri-
bution is smeared over the domain, and the sur-
face integral (in 3D) or the line integral (in 2D)
over Γ is approximated with an integral over the
domain Ω:

ΨS(ϕ) :=

∫
Γ

Gc dΓ ≈
∫
Ω

Gcγ(ϕ,∇ϕ)dΩ

≈ Gc

2

∫
Ω

[
lc∇ϕ · ∇ϕ+

ϕ2

lc

]
dΩ

(3)

where Gc is the fracture energy and lc is the in-
ternal length scale parameter of the phase field.

The total energy functional therefore reads:

Π =

∫
Ω

(g(ϕ)Ψ+
0 (ε) + Ψ−

0 (ε))dΩ

+

∫
Ω

Gc

2

[
lc∇ϕ · ∇ϕ+

1

lc
ϕ2

]
dΩ

−
∫
Ω

bu dΩ−
∫
∂Ωt

t̄u d∂Ωt

(4)

The weak form of the problem is determined
through the minimization of the above func-
tional, which is done by computing its virtual
variation with respect to the primary indepen-
dent field variables:

δΠ =
∂Π

∂u
δu+

∂Π

∂ϕ
δϕ (5)

which yields:

δΠ =

∫
Ω

σδε dΩ−
∫
Ω

2(1− ϕ)δϕΨ+
0 (ε) dΩ

+

∫
Ω

Gc

(
lc∇ϕ∇δϕ+

1

lc
ϕδϕ

)
dΩ

−
∫
Ω

bδu dΩ−
∫
∂Ωt

t̄ δu d∂Ωt

(6)
In addition to the above, to avoid healing

of the material during damage evolution, an ir-
reversibility condition upon ϕ has to be intro-
duced. Again, we follow here the approach
in [20], which introduces the following history
variable H in Eq.(6).

H =

{
Ψ+

0 (ε) if Ψ+
0 (ε) > Hn

Hn otherwise (7)

where Hn is the value of Ψ+
0 at the previ-

ous pseudo-time step of a quasi-static simula-
tion with pseudo-time increasing applied dis-
placements/loads. Note that the function H sat-
isfies the Karush-Kuhn-Tucker conditions:

Ψ+
0 −H ≤ 0, Ḣ ≥ 0, Ḣ

(
Ψ+

0 −H
)
= 0 (8)

The strong form associated to the weak from
in Eq.(6) is:

∇ · σ + b = 0 in Ω, σ · n = t̄ on ∂Ωt̄

u = ū on ∂Ωu

(9)
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−Gclc∇2ϕ+

[
Gc

lc
+ 2Ψ(ε)

]
ϕ = 2Ψ(ε) in Ω

∇ϕ · n = 0 on ∂Ω
(10)

To solve the above weak form, a four-nodes
bilinear quadrilateral finite element discretiza-
tion is introduced. Therefore in the FEM frame-
work, at an elemental level, the displacement
field u and the phase field ϕ are discretized
by shape functions Nu and Nϕ expressed as
follows. The corresponding derivatives of dis-
placement and phase field values are also men-
tioned below:

u = Nuue, ϕ = Nϕϕe

ε = Buue, ∇ϕ = Bϕϕe

(11)

Similarly, the virtual variation terms of pri-
mary variables and their derivatives are defined
as

δu = Nuδue, δϕ = Nϕδϕe

δε = Buδue, ∇δϕ = Bϕδϕe

(12)

where Bu, Bϕ are the derivatives of the shape
functions Nu and Nϕ, respectively.

The arbitrariness of test functions leads to
the following residual mechanical field and
phase field vectors:

Ru =

∫
Ωe

BT
uσ dΩ−

∫
Ωe

NT
ub dΩ

−
∫
∂Ωe

NT
ut d∂Ω

(13)

Rϕ =

∫
Ωe

GclcB
T
ϕ∇ϕ dΩ +

∫
Ωe

Gc

lc
NT

ϕϕ dΩ

+

∫
Ωe

2HNT
ϕϕ dΩ−

∫
Ωe

2NϕH dΩ

(14)
The solution to the nonlinear problem can

be achieved via the application of the Newton-
Raphson solution scheme within a staggered
approach, which requires the linearization of
the residual vectors with respect to the field
variables:

Ku =
∂Ru

∂u
=

∫
Ωe

BT
uCBu dΩ (15)

Kϕ =
∂Rϕ

∂ϕ
=

∫
Ωe

GclcB
T
ϕBϕ dΩ

+

∫
Ω

[
Gc

lc
+H

]
NT

ϕNϕ dΩ

(16)

The details of computation of the fourth or-
der stiffness tensor C and the second order
stress tensor σ are outlined in [28]. There-
fore, the finite element implementation of the
Phase field approach using the staggered solu-
tion scheme method [20] is implemented to find
the displacement field and phase field solution.

3 Proposed parameters’ identification pro-
cedure and benchmark tests

The issue of model parameters’ identifica-
tion for the phase field approach to fracture is
relevant for technical applications, as outlined
in the introduction. PSO has been proven to
be a very effective tool in model parameters’
identification for nonlinear fracture mechanics
problems involving plasticity and cohesive frac-
ture [27].

PSO [30] allows the scattering of certain
populations of particles in a pre-defined para-
metric design space. PSO particles are then
optimized by achieving a minimum target cost
function (Υ) to match the user desired mechan-
ical response. In the present problem, Young’s
modulus (E), fracture toughness (Gc), and the
phase field internal length scale parameter (lc)
are the parameters defining each swarm parti-
cle position. Considering a force-displacement
mechanical response (from experiments or de-
sired), the target cost function (Υ) for every
swarm particle is defined as

Υ(χ) =

√√√√ N∑
d=1

[
∆Fd(χ)

F̂d(χ)

]2

(17)

where ∆Fd(χ) = Fd − F̂d(χ), in which Fd

denotes the history of simulated forces for the
range of imposed pseudo-time steps d (d =
1, . . . , N). The simulated test is conducted un-
der displacement control till ‘N ’ number of
imposed displacements for a given set of trial
model parameters. Analogously, F̂d(χ) repre-
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sents the target values of forces for the same
‘N ’ imposed displacements.

As a benchmark test, to show the applicabil-
ity of PSO to parameters identification of phase-
field fracture models, we consider here a Mode
I single edge notch test (see Fig.1). The fol-
lowing properties are set as an input for the
simulation (E= 210 GPa, Gc = 2.7 kN/mm,
lc = 0.1 mm). The finite element discretization
consists of 1949 four-noded bilinear quadrilat-
eral finite elements with a minimum mesh size
of 0.05 mm along the potential crack path. The
force-displacement curve predicted by phase
field simulation is taken as the target function
F̂d. This should be subsequently matched by the
PSO algorithm applied to identify the material
parameters that are considered to be unknown.

Figure 1: Benchmark problem: geometry, load-
ing and boundary conditions.

In this regard, we attempt to identify all three
material parameters simultaneously. In the 3D
parameter space, we consider Np = 30 parti-
cles as population size, a maximum of 150 it-
erations With the following PSO parameters:
inertia weight Wi = 0.9, damping weight
wdamp = 0.99. To assess the convergence of the
PSO algorithm, the velocity of the constriction
factor-based approach [31] is adopted here. The
positive weights are applied to certain force-
displacement points to set a priority while de-
termining the cost function (Υ). If no posi-
tive weights are applied, all points in the force-
displacement curve are treated equally. In the

above-mentioned approach to guarantee stabil-
ity [32], φ was set as 4.1 and Cc = Sc = 2.05.
The design-constrained particle space is defined
as follows:

Z ={180 < E < 230 GPa; 1.2 < Gc < 3.8

kN/mm; 0.02 < lc < 0.2 mm}
(18)

which includes the values of the three parame-
ters to be identified.

The evolution of swarm particles’ position
within the design space concerning PSO itera-
tions are shown in Fig.4. The identified values
of the model parameters were E = 209.967
GPa, Gc = 2.699 kN/mm, lc = 0.099 mm,
which are not too far from the parameters used
to generate the target response numerically.

Figure 2: Cost function vs. No. of PSO itera-
tions for the benchmark test.

Figure 3: Force-displacement curve and target
curve.
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(a) Initial particles’ position

(b) Iteration No. 3

(c) Iteration No. 25

(d) Iteration No. 54

Figure 4: Scatter representation of particles
in the iterations of the PSO algorithm for the
benchmark test problem.

The cost function vs. a number of iterations
is shown in Fig.2, with an error in the force-
displacement curve at the 54th iteration lower
than 1× 10−4.

For completeness, the force-displacement
curve corresponding to the identified model pa-
rameters accurately matches the target one, see
Fig.3.

Therefore, in the sequel, the PSO algorithm
with the parameters considered above is applied
to identify fracture mechanics parameters con-
cerning the experimental results of ABS mate-
rial discussed in Sec.4.

4 Identification of material properties from
experimental data of ABS co-polymers

The robustness of the PSO algorithm applied
to the identification of fracture mechanics pa-
rameters is herein assessed in relation to experi-
mental results of ABS co-polymer material sub-
jected to tensile and three-point bending load-
ing conditions.

A series of uni-axial and three-point bending
experimental tests were carried out. The scatter
in the experimental curves shown in Figs.6(a)
and 8(a) is due to the typical effect induced by a
slight variation in the amount of additives used
to reduce swelling in ABS materials for injec-
tion moulding [33].

The PF formulation based on the AT2 model
has been applied to simulate the corresponding
tests, and coupled with the PSO algorithm, pa-
rameter identification has been performed. All
the routines are coded in MATLAB, release
2020b.

Young’s modulus E, fracture parameters Gc

(fracture energy), and lc (internal length scale)
were chosen as PSO swarm particle parameters
to be identified. The range of ABS properties to
conduct PSO-PF simulations were taken from
literature: tensile strength σmax ∈ {22, 49}
MPa, E ∈ {1100, 2900} MPa, Poisson’s ra-
tio ν = 0.37 and fracture toughness KI,c ∈
{1.2, 4.2} MPa

√
m. Exploiting the correlations

Gc =
K2

I,c(1−ν2)

E
and lc = 27

256
GcE

(1−ν2)σ2
max

, we
derived the following range of variability for
Gc ∈ {1.25, 13.8} N/mm and lc ∈ {0.25, 3.8}
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mm.

4.1 Uni-axial tensile tests
Experimental tests were conducted and re-

peated 15 times on specimens of ABS material
under uni-axial tensile loading conditions. The
specimen geometry is length × width × thick-
ness = 114 × 10.2 × 4.5 mm. The boundary
conditions are depicted in Fig.5. Stress-strain
curves are shown in Fig.6(a). PF numerical sim-
ulations have been performed by replicating the
experimental conditions (see Fig.5). Dirichlet
boundary condition ϕ = 0 [34, 35] imposed on
the phase field at both ends of the tensile test
model.

Since uni-axial tensile tests are unsuitable
for fracture mechanics characterization, we set
an average value of GC = 7.5 N/mm from
the literature for all 15 numerical simulations.
E and lc are the parameters to be identified
that influence the initial linear elastic regime of
the stress-strain curves and the material tensile
strength (computed from the peak load value
before specimen failure). Therefore, the PF-
PSO simulations are conducted with swarm par-
ticles in the parameter space (E, lc), with ad-
missible range for E ∈ {1100, 2900} MPa and
for lc ∈ {0.25, 3.8} mm. Fig.6(b) shows the op-
timal PSO-PF response of the 15 stress-strain
curves that minimize the error from the experi-
mental ones. Table 1 collects the PSO-identified
parameters for the 15 tests. From this analysis,
considering the mean values and the standard
deviations, the identified Young modulus corre-
sponds to E ± σE = 1157.904.01 ± 34.8223
MPa, and the internal length scale lc ± σlc =
1.3361± 0.0408 mm.

4.2 Three-point bending tests
Three-point bending tests with notched sam-

ples are now considered since they can also be
exploited for fracture mechanics characteriza-
tion. Therefore, applying the PSO algorithm
combined with the PF simulation framework is
possible to identify all three model parameters,
E, lc, and Gc. Now these are critically com-
pared with the outcome of the previous parame-

ters’ identification results concerning uni-axial
tensile tests.

Experimental tests were conducted on a set
of ABS specimens with an initial sharp V-
notch under the three-point bending loading,
see Fig.7(a) and (b), showing the initially unde-
formed configuration and the specimen at fail-
ure. Fig.7(b) shows the formation of crazing
at the notch tip, which is highlighted by the
change of color of ABS from yellow to white
due to the stretching of the polymeric fibers
during crack growth. The spread of crazing in
the direction orthogonal to the mid-span cross-
section is relatively consistent. It certainly rep-
resents a zone of diffuse damage that could
be simulated using the phase-field approach to
fracture with a finite -not vanishing- internal
length scale lc. Compared to PMMA investi-
gated in [22], ABS is much less brittle.

The geometrical data are shown in Fig.7(c).
Fig.7(d) depicts an FE mesh with linear quadri-
lateral finite elements with a fine discretization
near the mid-cross-section and a coarser one far
from the perspective crack path. A preliminary
mesh sensitivity analysis has been performed
for the PF simulations, considering 1614, 7076,
or 13984 finite elements using different degrees
of refinement of the mesh far from the mid-
cross-section. The numerical predictions were
almost unaffected if the mid-cross-section was
properly discretized. The discretization in 1614
FE has been considered for the parameter iden-
tification issue to speed up computation time.

Figure 5: (a) Photo of the specimen, (b) Dimen-
sions and boundary conditions, (c) FE mesh.
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Table 1: PSO identified E and lc parameters for
the 15 tests in Fig.6, with their mean and stan-
dard deviation values.

Test # E (MPa) lc (mm)
1 1130.39 1.281
2 1116.48 1.306
3 1215.08 1.415
4 1197.61 1.362
5 1183.24 1.320
6 1169.18 1.359
7 1120.50 1.290
8 1164.82 1.321
9 1123.67 1.273
10 1141.05 1.330
11 1107.73 1.392
12 1193.60 1.376
13 1152.43 1.318
14 1203.60 1.347
15 1149.19 1.351

(a) Experimental results

(b) Numerical simulations

Figure 6: Experimental and numerical simu-
lation results identified (corresponding to the
identified model parameters).

Force vs. mid-span displacement curves for
the 15 tests are shown in Fig.8. It compares
the experimental curves (left panel) with the re-
sults of the numerical simulations (right panel)
corresponding to the identified best model pa-
rameters by the PSO algorithm. Again, the
following range of values has been considered
E ∈ {1100, 2900} MPa, Gc ∈ {1.25, 13.8}
N/mm, lc ∈ {0.25, 3.8} mm.

(a) Undeformed specimen

(b) Deformed specimen at failure

(c) Geometry and boundary conditions (measures in mm)

(d) FE model

Figure 7: Experiment specimen and geometri-
cal details (in mm), loading, boundary condi-
tion, meshing details of a numerical model for
three-point bending loading case

Table 2 collects all the identified parameters
E, Gc, and lc, with their respective mean val-
ues and standard deviations. Results can now
be compared with the outcome of the identi-
fication performed on uni-axial tensile tests of
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the same materials, and that was limited to two
model parameters, E and lc. The identified
Young modulus in the case of three-point bend-
ing tests was 1153.07±35.03 MPa, and it is very
close to the identified Young’s modulus from
the uni-axial tensile tests, which was estimated
as 1157.90 ± 34.82 MPa. The identified frac-
ture toughness from three-point bending tests is
8.85 ± 1.94 N/mm, and it compares well with
the average value taken from the literature and
is equal to 7.5 N/mm that was set for all the uni-
axial tensile tests. On the other hand, a signif-
icant discrepancy is observed as far as the in-
ternal length scale parameter lc is concerned.
The identified value from the three-point bend-
ing tests is 0.346 ± 0.157 mm, while from the
uni-axial tensile tests, it was 1.336±0.041 mm.
In addition to being smaller, the scatter also in-
creased, as one can notice from the higher stan-
dard deviation value. Henceforth inverse analy-
sis procedure is strongly recommended to iden-
tify length scale parameters for different geom-
etry loading test problems [36].

Table 2: PSO identified E, Gc and lc parame-
ters for the 15 tests in Fig.8, with their mean
and standard deviation values.

Test # E (MPa) Gc (N/mm) lc (mm)
1 1189.39 7.56 0.250
2 1189.67 7.56 0.250
3 1101.17 8.83 0.256
4 1173.92 7.18 0.251
5 1176.29 7.84 0.250
6 1158.87 8.29 0.252
7 1179.82 7.38 0.290
8 1178.73 7.37 0.291
9 1133.36 8.35 0.303
10 1100.58 12.28 0.649
11 1100.40 12.21 0.639
12 1167.95 7.63 0.250
13 1139.86 10.23 0.369
14 1113.41 12.40 0.642
15 1192.62 7.62 0.256

Mean 1153.07 8.85 0.346
Std. dev. (STD) 35.03 1.94 0.157

(a) Experimental results

(b) Numerical simulation results

Figure 8: Representation of experimental and
numerical simulations of 15 force-displacement
curve results.

5 Conclusion
The critical issue of model parameters’ iden-

tification for the phase field approach to frac-
ture has been systematically addressed in this
work. The proposed framework combines the
heuristic identification approach based on Par-
ticle Swarm Optimization (PSO) and the FE
implementation of the phase field (PF) ap-
proach to fracture, which has effectively identi-
fied model parameters. Both formulations have
been implemented in MATLAB release 2020b
in an ad hoc integrated FE software. Still, the
methodology is general and requires a FE solver
equipped with PF finite elements to be called
by the PSO algorithm with a set of model pa-
rameters. The outcome of the FE simulation, in
terms of the force-displacement curve, is again
passed to the PSO algorithm, which computes
the cost function and updates the particle coor-

9



First A. Author, Second B. Author

dinates, iterating the procedure till convergence.
Therefore, any commercial FE software could
be triggered using the system command called
by the PSO algorithm.

The robustness of the proposed approach has
been assessed in relation to a benchmark test
numerically generated in silico, i.e., by running
a PF fracture simulation with known model pa-
rameters. The PSO algorithm could accurately
retrieve the known input parameters from the
identification procedure.

The methodology has been finally applied to
the critical problem of identifying the AT2 PF
model parameters concerning real experimental
tests on ABS materials which display a spread
of diffuse damage typical of a quasi-brittle ma-
terial. First, the PSO-PF combined approach
has been applied to uni-axial tensile tests, iden-
tifying only E and lc from the experimental
curve up to the decay of the peak load. The
uni-axial tests for this material cannot be used
to assess the fracture energy, which has been
set equal to the average value taken from the
literature since the material undergoes strain lo-
calization with the crazing formation and large
deformation in the post-peak branch, a situation
far from the fracture. The identification pro-
cedure has been repeated for sharp V-notched
samples tested under three-point bending. This
time, all the three model parameters (E, Gc, lc)
are identified since the post-peak branch can be
reasonably well simulated as a result of a prop-
agating crack.

To summarize the work, the proposed algo-
rithm quantitively tracks the crack path phe-
nomenon of the fracture problem. In addi-
tion, it also captures numerically experimental
force-displacement curve responses by identi-
fying phase field model parameters, which is
a significant challenge due to the high depen-
dence on the PF internal length scale parame-
ter. Therefore PSO-PF numerically coupled al-
gorithm provides a qualitative insight into the
fracture design problems in avoiding under or
overestimating critical structural limits of the
load, which saves computational time and the
cost of the material.
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