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Abstract. Size-effect defines the relation between the nominal strength at the onset of fracture and
structural size. More generally, size-effect is interested in the variation of the mechanical response of
geometrically similar structures. In order to simulate the size-effect, one needs to rely on numerical
modeling to describe the formation, development and propagation of the fracture process zone. Al-
though a number of models have been proposed over the years, a correct description of fracture and
size-effect which accounts for boundary effects and varying structural geometry remains challenging.
In this study, the Lattice Discrete Particle Model (LDPM) is used to investigate the effects of structural
dimension and geometry on the nominal strength and fracturing process in concrete. LDPM simulates
concrete at the aggregate level and has shown superior capabilities in simulating complex cracking
mechanisms, thanks to the inherent discrete nature of the model. To provide a solid validation of
LDPM, one of the most complete experimental data set available in the literature was considered and
includes three-point bending tests on notched and unnotched beams. The model parameters were first
calibrated on a single size notched beam under three-point bending and on the mechanical response
under unconfined compression. LDPM was then used to perform blind predictions. The results show
a very good agreement with the experimental data.

1 INTRODUCTION

Size-effect in quasi-brittle materials is a re-
duction in strength, observed when the struc-
tural size increases in geometrically similar
structures. This phenomenon is well known for
concrete (see for instance the work of [1–4])
and its importance was acknowledged in the
civil engineering community, as it was for the
first time incorporated in the most recent ACI
standard in 2019 [5]. For concrete, simplified
analytical formulations such as Bažant’s size-
effect law [6] only provide an approximate de-
scription of concrete scaling law. In order to ac-
count for the release of the stored energy in the

fracture process zone (FPZ), and for the devel-
opment and propagation of the fracture front for
different specimen sizes and shapes, one must
carry out accurate numerical simulations.

Several types of models have been proposed
over the years to describe concrete fracture and
size-effect. One can mention for instance the
cohesive model [7], the crack-band model [8],
non-local continuum damage models [9, 10],
and discrete models [11]. In all the aforemen-
tioned formulations, two features are essential
in capturing size-effect in strain softening ma-
terials such as concrete: (i) crack localization
and (ii) existence of an internal characteristic
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length related to the size of the heterogeneity.
In continuum models, these two ingredients are
phenomenologically defined through constitu-
tive laws. In this respect, random lattice or par-
ticle models such as the ones described by [12]
or [13] are considered superior. In this study,
one of such models, namely the Lattice Discrete
Particle Model (LDPM) [12, 14], which simu-
lates concrete at the coarse aggregate level, is
adopted.

In order to assess the capabilities of LDPM
in simulating fracture and predicting size-effect,
a comprehensive experimental data set on con-
crete fracturing [3] is considered. This data
set is among one of the very few available in
the literature that includes three-point bending
tests on notched and unnotched beams and en-
compasses a large range of beam depths. This
data set was previously used in several stud-
ies involving other numerical models. More
specifically, an integral-type non-local model
was used but was found ineffective in capturing
correct size and geometry effects [3]. A lattice
model [15] was able to simulate the data with
a good accuracy. The model used in that study
was bidimensional and, to the authors knowl-
edge, there has been no attempt to extend the
simulations to the 3D case.

More recently, a study proposed to simu-
late concrete fracturing using a local isotropic
damage constitutive model of the Rankine type
through the crack band model [16]. Although
a good agreement with experimental data was
found, this type of smeared crack model is lim-
ited in capturing complex cracking mechanisms
and realistic crack tortuosity observed in con-
crete, which might have a non-negligible effect
on energy dissipation during fracture. As a mat-
ter of fact, this effect is especially important in
the case of unnotched beams where a large dam-
age zone develops before collapsing into a sin-
gle propagating crack that is ultimately tortu-
ous.

Last but not least, a re-implementation of
LDPM which includes stochasticity in material
parameters was also used to simulate some of
the data used in this paper [17] with a very good

accuracy. It should be emphasized, however,
that this study did not assess the capability of
the model to predict size-effect.

In this work, the LDPM parameters were cal-
ibrated on a single beam configuration, leaving
the remaining fracture test results for blind pre-
dictions, including splitting tests. It is our wish
that this work would, to some extent, pave the
way for more detailed and quantitative analy-
ses of goodness of fits and prediction quality
in future numerical studies within the concrete
community, using the same set of experimen-
tal data and possibly other data. This would ul-
timately allow one to compare different model
capabilities, develop the most effective models
and abandon the less accurate ones.

The content of this paper has been presented
in details in a recent paper [18]. The major re-
sults are summarized in the following.

2 LATTICE DISCRETE PARTICLE
MODEL

This model, originally proposed by Cusatis
and coworkers [12, 14], simulates the mechan-
ical interactions among major material hetero-
geneities, i.e. coarse aggregates in concrete.
Over the years, LDPM has been used to simu-
late quasi-brittle materials such as mortar [19,
20], fiber reinforced concrete and engineered
cementitious composites [21–23], or cycling
in concrete [24]. LDPM was also coupled to
multi-physics models describing cement hydra-
tion from microscale simulations, heat trans-
fer and mositure diffusion, alkali-silica reac-
tion, creep, aging [25–28], or more recently
self-healing in concrete [29].

2.1 Internal geometry
In order to generate the LDPM skeleton,

spherical particles are placed in a volume of
material from the largest to smallest size. This
placement follows a prescribed particle size dis-
tribution that is based on the actual concrete mix
design with the maximum and minimum aggre-
gate sizes, da and d0, respectively. Figure 1(a)
shows an example of particle placement in a
prismatic sample. In order to simulate the in-
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teraction between particles, a lattice system is
generated by means of a Delaunay tetrahedral-
ization with the centers of particles. A dual tes-
sallation is then performed which finally pro-
duces a system of polyhedral cells enclosing
the spherical particles. Figure 1(b) shows an
example of two adjacent polyhedral cells en-
closing the spherical particles. The surface of
each polyhedral cell is composed of triangular
facets where failure can potentially occur. On
each facet, stresses and strains are formulated
in a vectorial form and related through consti-
tutive equations. Figure 1(c) shows the three
unit vectors defined at a generic facet colored in
red, in the normal direction and in the two tan-
gential directions. LDPM incorporates specific
constitutive equations to describe tensile frac-
turing with strain softening, cohesive and fric-
tional shearing, and compressive response with
strain-hardening. Since this study focuses on
concrete fracturing, the corresponding constitu-
tive laws are recalled only.
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Figure 1: Fractured high strength concrete.

2.2 Elastic, tension, and tension-shear con-
stitutive behaviors

If xi and xj denote the positions of nodes i
and j, adjacent to the facet k, the facet strain
vector is defined as:

ek = [eNk
eMk

eLk
]t

=

[
nt
k[[uk]]

lk

mt
k[[uk]]

lk

ltk[[uk]]

lk

]t (1)

where eNk
is the normal strain component, and

eMk
and eLk

are the tangential strain compo-
nents, [[uk]] = uj − ui is the displacement
jump corresponding to facet k, lk = ∥xj − xi∥
is the distance between the two nodes, nk =
(xj −xi)/lk and mk and lk are two unit vectors
mutually orthogonal in the facet plane projected

orthogonally to the line connecting the adjacent
nodes.

The stress vector on facet k is defined as
tk = [tNk

tMk
tLk

]t, where tNk
is the nor-

mal component, and tMk
and tLk

are the shear
components. For the sake of readability, the
subscript k that designates the facet is further
dropped. The elastic behavior is formulated
through linear relations between the normal and
shear stress vector components, and the corre-
sponding strain vector components as follows:

tN = ENeN , tM = ET eM , tL = ET eL (2)

where EN = E0 and ET = α0E0. E0 ≈
E/(1 − 2ν) and α0 ≈ (1 − 4ν)/(1 + ν) are
the effective normal modulus and the shear-
normal coupling parameter, respectively. E is
the macroscopic Young’s modulus and ν is the
macroscopic Poisson’s ratio.

Because of the mesoscale nature of the
model, concrete fracturing in mode I opening
is always accompanied by shear at facets. This
is a realistic feature since it is experimentally
observed that most fracture paths are located
at the interface between aggregates and cement
paste. Therefore, the cohesive fracture behav-
iors in tension but also in tension-shear are
important. This cohesive fracture occurs for
eN > 0. One can define an effective strain as
e = (e2N+α0(e

2
M+e2L))

1
2 , and an effective stress

as t = (t2N + (t2M + t2L)/α0)
1
2 and write the re-

lationship between stresses and strains through
tN = teN/e, tM = α0teM/e and tL = α0teL/e.
The effective stress t is defined incrementally
as ṫ = EN ė and its magnitude is limited by a
strain-dependent boundary which is written as
0 ⩽ t ⩽ σbt(e, ωsn) where

σbt(e, ωsn) = σ0(ωsn)

exp

[
−H0(ωsn)

⟨emax − e0(ωsn)⟩
σ0(ωsn)

]
.

(3)

⟨x⟩ = max(x, 0), ωsn is a variable defining
the level of interaction between shear and nor-
mal loadings. It is defined as tan(ωsn) =
(eN)/(

√
α0eT ) = (tN

√
α0)/(tT ) where eT is

the total shear strain eT = (e2M + e2L)
1
2 , and
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tT is the total shear stress tT = (t2M + t2L)
1
2 .

The maximum effective strain is time depen-
dent and is defined as emax(τ) = (e2N,max(τ) +

α0e
2
T,max(τ))

1
2 where eN,max(τ) = max

τ ′<τ
[eN(τ

′)]

and eT,max(τ) = max
τ ′<τ

[eT (τ
′)]. The strength

limit of the effective stress that defines the tran-
sition between pure tension and pure shear is
written as

σ0(ωsn)

= σt
− sin(ωsn)

2α0 cos2(ωsn)/r2st

+ σt

( sin2(ωsn) + 4α0 cos
2(ωsn)/r

2
st)

1
2

2α0 cos2(ωsn)/r2st

(4)

where rst = σs/σt is the ratio of the shear
strength to the tensile strength, σs is the shear
strength and σt is the tensile strength. The post-
peak softening modulus is controlled by the ef-
fective softening modulus in Eq. (3) H0(ωsn) =
Hs/α0 + (Ht − Hs/α0) (2ωsn/π)

nt , in which
Ht = 2E0/(lt/l − 1), Hs = rsE0 and nt is
the softening exponent. Typically, the values of
nt = 0.2 and rs = 0 are assumed and are fixed.
lt is the tensile characteristic length defined as
lt = 2E0Gt/σ

2
t and Gt is the mesoscale fracture

energy.

2.3 Static equilibrium equations and nu-
merical implementation

The static linear and angular momentum
equilibrium equations of each LDPM cell are
written as follows:∑

k∈FI

Ap
ktk = 0 ,

∑
k∈FI

Ap
kck × tk = 0 (5)

where FI is the set containing all the facets of a
generic polyhedral cell I , Ap

k = Akn
tnk is the

area of the projected facet k, n is the orienta-
tion of the tetrahedron edge associated to facet
k and nk is the unit vector orthogonal to facet k
of area Ak [12]. ck is the vector that represents
the distance between the center of facet k and
the center of the cell.

The model was implemented within a dy-
namic explicit scheme, with a central differ-
ence algorithm for time integration. Although
the actual equations that are solved numerically
are dynamic (see [12] for more details), loading
rates were small enough to ensure the kinetic
energy in the system would not exceed 5% of
the internal energy throughout the analysis.

3 MODELING AND CALIBRATION
In the experimental work by [3], four sizes of

geometrically similar prismatic specimens with
four depths D = 50 mm, 100 mm, 200 mm, and
400 mm, span-to-depth ratio S/D of 2.5, and
out-of-plane thickness of 50 mm were tested in
three-point bending. Unnotched and notched
samples with a notch length a and the notch-
to-depth ratios α = a/D = 0.5, 0.2, 0 were
tested under CMOD control to obtain a stable
post-peak response. In the case of unnotched
beams, the extensometer was attached to the
bottom surface of the beams, making sure that
the major crack occured within the measure-
ment zone of the extensometer. The data set
also includes unconfined compression tests on
cylindrical specimens and splitting tests. More
details on the experimental program are given
in Ref. [3].
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Figure 2: (a) Simulated particle size distribution, LDPM
cells, geometries, and dimensions of the simulated beams
with the notch-to-depth ratios of (b) 0.5, (c) 0.2, and (d)
0 viz. unotched beam.

The parameters required to construct the
LDPM models were first identified based on the
actual mix design used in the experiments. The
particle size distribution was numerically repro-
duced following the procedure described in [28]
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with a cut-off size d0 = 4 mm and a maximum
size da = 10 mm.

Figure 2(a) shows the experimental and nu-
merical sieve curves. The remaining param-
eters were also chosen based on the mix de-
sign: cement content c = 286 kg m−3, water-
to-cement ratio w/c = 0.626, and density
ρ = 2121 kg m−3. Figure 2(b)-(d) show the
simulated geometries and the resulting LDPM
cells at the surface of the 3D samples.

3.1 Modeling and calibration process
The identification of the parameters in the

constitutive laws describing elastic, tension,
and tension-shear behaviors followed a two-
step procedure. First, the normal modulus E0

and α0 related to the elastic behavior were cal-
culated using the approximated formulas listed
in Section 2.2, based on the mean values of the
macroscopic elastic modulus and Poisson’s ra-
tio reported by [3]. The values of E0 = 57180
MPa and α0 = 0.25 were obtained.

Next, the three parameters related to fracture
and shear, i.e. the mesoscale tensile strength
σt, the mesoscale fracture energy Gt, and the
shear-to-tensile strength ratio rst were identi-
fied simultaneously based on: (i) the compres-
sive strength obtained from cylinders (diameter
Dc = 74 mm and height Hc = 142 mm), and
(ii) the load-CMOD curve corresponding to the
medium size beam with the depth D = 200
mm and α = 0.2. For the compression test,
rigid plates were used on the top and bottom
of the specimens. Friction between the plates
and the sample was simulated through a sim-
ple Coulomb friction law with a friction co-
efficient µ = 0.13. Concerning the bending
test, the loads were applied directly on the sur-
face nodes. Both compression and fracture tests
were simulated under displacement control with
a constant velocity of 1 mm s−1 to ensure quasi-
static conditions. For each test, three simula-
tions were performed with different spatial dis-
tributions of particles. The values of σt = 2.9
MPa, Gt = 45.5 N m−1, and rst = 3.276 were
obtained after a simultaneous fit of the bending
and compression tests.
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75Figure 3: Calibration results: (a) stress-strain curve of the

unconfined compression test; the empty circle designates
the mean peak value, (b) failure mode at the peak load (c)
load-CMOD curve of the three-point bending test on the
notched beam with D = 200 mm and α = 0.2.

Figure 3(a) shows the simulated stress-strain
curve of the compression test together with the
compressive strength obtained experimentally.
The solid line is the mean curve of the three
individual simulations. The gray area repre-
sents the experimental scatter where the upper
and lower bounds of the envelope correspond
to the maximum and minimum values of the
strength, respectively. The mode of failure at
peak is shown in Figure 3(b), characterized by
a shear band. The LDPM facets are colored
according to the value of the mesoscale crack
opening defined as w = (w2

N + w2
M + w2

L)
1
2

for eN > 0 and w = 0 for eN < 0, wi = leinei

where einei = ei−ti/Ei is the inelastic strain for
i = N,M,L, and l is the edge length defined in
Section 2.2. Figure 3(c) shows the experimental
and numerical load-CMOD curves for the bend-
ing test.

The elastic behavior modeled by two param-
eters (E0, α0) and the mesoscale mixed mode
fracture governed by three parameters (σt, Gt,
rst) have been now identified. Concrete failure
is characterized by multiple mechanisms that
are different and LDPM is able to simulate all
these mechanisms. For each mechanism, there
is a set of relevant model parameters (less than
4) which makes the total number of parame-
ters to be 16. The remaining parameters that
could not be fitted (because they correspond to
failure mechanisms that are not relevant in the
present experiments) were assumed based on
the actual mix design and Section 5.3 by [14]:
σc0 = 120 MPa, Hc0/E0 = 0.4, kc0 = 2,
kc1 = 1, kc2 = 5, µ0 = 0.2, µ∞ = 0, σN0 = 600
MPa, and Ed/E0 = 1.
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4 PREDICTIONS
LDPM was first validated on splitting tests

for which peak loads for nine replicates are re-
ported by [3]. For this purpose, three cylinders
with the height Ls = 215 mm and the diameter
Ds = 113 mm with different spatial distribu-
tions of particles were simulated. The load was
applied directly on particles at the surface of the
cylinder. In addition, the simulations were per-
formed under displacement control with a con-
stant loading rate of 1 mm s−1 to ensure quasi-
static conditions.

Figure 4(a) shows the mean predicted nom-
inal stress versus displacement curve repre-
sented by a solid line and the three individual
simulations in dashed lines, along with the ex-
perimental scatter represented with a gray area.
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Figure 4: Prediction results: (a) nominal stress-
displacement curve of the splitting test; the empty circle
designates the mean peak value, and (b) failure mode at
the peak load.

The nominal strength was computed using
the formula fst = (2Pst,u)/(πDsLs) where
Pst,u is the splitting peak force. One can ob-
serve that the numerical mean splitting tensile
strength is within the scatter of the experiments.
Figure 4(b) shows the mode of failure at the
peak load. As expected, and in accordance with
experimental observations, fracture initiates at
the center where tensile stresses are the highest.
The main crack is tortuous and has a slight ec-
centricity with respect to the vertical line pass-
ing through the center. This is due to the inher-
ent ability of the mesoscale model to reproduce
heterogeneity in the material.

The model was next used to predict the load-
CMOD curves for all sizes and notch lengths.

The simulations were performed under dis-
placement control by applying loads at a con-
stant loading rate of 1 mm s−1.
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Figure 5: Prediction results: load-CMOD curves for (a)
α = 0.5, (b) α = 0.2, (c) α = 0, the empty circles desig-
nate mean peak values; failure modes at the peak load for
the samples with the depth D = 100 mm for (d) α = 0.5,
(e) α = 0.2, (f) α = 0; failure modes at a displacement of
0.2 mm for the samples with the depth D = 100 mm for
(g) α = 0.5, (h) α = 0.2, (i) α = 0; dissipated energies
for (j) α = 0.5, (k) α = 0.2, (l) α = 0.

Figures 5(a)-(c) show the predicted curves
for the notch-to-depth ratios of 0.5, 0.2, and 0,
respectively. The solid line is the mean response
of the three individual simulations in dashed
lines. The experimental scatter is represented
with a gray area. One can observe that the nu-
merical simulations predict well the mechanical
behavior in the elastic, near-peak and post-peak
regimes for the different geometries and sizes.
The prediction in the post-peak regime of the
smallest size beam with a notch-to-depth ratio
of 0.5 deviates from the experimental results.
The reason might be that the number of aggre-
gates in the ligament is not enough and makes
the model too coarse. In addition, boundary ef-
fects play a significant role for such small spec-
imens. In the case of the two unnotched beams
with largest sizes, the response stops at the peak
due to snapback, similarly to what was observed
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in the experiments.
Figures 5(d)-(i) show the typical failure

modes for the beams with the size D = 100
mm for two different displacement values. Two
types of failure can be distinguished. (i) For
the notched specimens, the FPZ is localized and
emanates at the crack tip. It develops for the
increasing load and finally reaches an ultimate
size at the peak load (Figures 5(d) and (e)). The
FPZ then propagates through the ligament (Fig-
ures 5(g) and (h)). (ii) For the unnotched spec-
imens, the FPZ initiates at the bottom surface
of the sample, where the stresses approach the
material tensile strength, and is diffused on a
zone much larger in size as compared to the
notched-beam case. As the load increases up
to the peak, the damaged zone becomes larger
(Figure 5(f)). At the peak load a single crack
propagates, whereas the surrounding material
unloads. The final crack does not necessarily
originate at mid-span. This phenomena shows
the direct effect of material heterogeneity, real-
istically captured by the mesoscale model. Al-
though not quantified here, the evolution of the
FPZ is consistent with the one described in [30]
based on Ripleys function analysis on the same
experimental data.

As a matter of fact, the very nature of the
model allows one to assess shear and tensile be-
haviors during fracture propagation. In general,
the LDPM facets are subject to both tensile and
shear strains even though the test configuration
is designed for mode I opening. One can look
at the evolution of the dissipated energy com-
puted from the increment of the dissipated en-
ergy density ẇd = 3(tN ė

ine
N + tM ėineM + tLė

ine
L )

for eN > 0 and the volume of the cell I con-
taining the facet VI = (

∑
k A

p
klk)/3. Sum-

ming over the entire volume of the sample, one
can obtain the evolution in time (or displace-
ment here) of the total dissipated energy Wd

and dissociate the individual contributions of
the normal component Wd,N and the tangen-
tial components Wd,T . Figures 5(j)-(l) show the
load-displacement curves for the beams with
the size D = 100 mm for the three different
notch lengths, together with the dissipated en-

ergies. As expected, the total energy dissipated
at the end of the test/simulation is smaller for
the larger notch length, i.e. for a smaller liga-
ment length. This is consistent with the acoustic
energy obtained from acoustic emission on the
same type of experiments reported in the work
of [31]. Moreover, one can observe a sharper
increase in the dissipated energy as the notch
length decreases, which is consistent with the
increase in brittleness as α tends to zero. Up to
the peak load, the energy dissipated in shear is
negligible as compared to the one in tension, for
all cases including the unnotched beam. How-
ever in the post-peak regime, the energy dissi-
pated in shear becomes more than half of the
energy dissipated in tension, which proves that
the post-peak behavior involves both shear and
tensile forces in the meso-structure.

5 UNIVERSAL SIZE-EFFECT LAW AND
FRACTURE PARAMETERS

Macroscopic properties of concrete such as
compressive or tensile strengths are usually de-
termined in laboratory using standardized sam-
ple dimensions. On the other hand, size-effect
tests applied in a certain range of sizes were
shown to provide an accurate estimation of frac-
ture properties [32]. This method is preferred
to the work of fracture method that provides ap-
parent fracture properties which are geometry
and size dependent.

The size-effect method only requires the
knowledge of peak loads and sample geome-
try. It appears therefore interesting to compare
the fracture parameters obtained using experi-
mental results as reported by [3] and parame-
ters one could identify using the numerical pre-
dictions, keeping in mind that only one load-
CMOD curve on a single size notched beam
was sufficient for model calibration. In this
study, the so-called Universal Size Effect Law
(USEL) in its deterministic version [33] was
considered. This fitting formula bridges Type I
size-effect which occurs in structures that fail at
crack initiation from a smooth surface and Type
II size-effect occurring in notched structures. It
also covers the two distinct asymptotic behav-
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iors at large size in the typical double-logarithm
nominal strength versus structural size repre-
sentation: (i) −1/2 slope corresponding to lin-
ear elastic fracture mechanics for Type II size-
effect and (ii) a straight horizontal line corre-
sponding to the elastic limit for Type I size-
effect. The formula is written as:

σNu =

√
EGf

g′0cf + g0D(
1−

rc2fg
′′
0e

−kα2

4(lp +D)(g0D + g′0cf )

)1/r (6)

where σNu = (3PuS)/(2WD2) is the nominal
strength corresponding to the peak load Pu, Gf

is the fracture energy , and cf is the effective
length of the FPZ. g0 = g(α0) is the dimen-
sionless energy release rate, and g′0 = g′(α0)
and g′′0 = g′′(α0) are its first and second deriva-
tives, respectively, evaluated at the initial notch-
to-depth ratios α0 = 0.5, 0.2, 0. Finally, r, k,
and lp are empirical constants.
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Figure 6: Fitting with the Universal Size Effect Law:
nominal strength versus size for (a) experimental data and
(b) simulation results.

Based on the expression of g(α) reported for
example by [34] or [3], the following values
were computed for the geometry studied in this
paper: g0 = 2.96, g′0 = 18.95, and g′0 = 153.88
for α = 0.5, g0 = 0.57, g′0 = 3.17, and g′′0 =
10.77 for α = 0.2, and g0 = 0, g′0 = 3.41, and
g′′0 =-16.75 for α = 0. By keeping the empirical
constants r = 0.11, k = 113, and lp = 12.9
identical to the ones reported in the work of [3],
the model was fitted using the simulation data.
The values of the fracture energy and effective
length, Gf = 39 N m−1 and cf = 16.8 mm were
obtained. Figures 6(a)-(b) show the fitted model

plotted together with the experimental and nu-
merical data. These predicted fracture parame-
ters are to be compared with the ones identified
using the experimental results, i.e. Gf = 42.6
N m−1 and cf = 25.7 mm [3]: both frac-
ture energy and effective length can be qualita-
tively considered close enough with respect to
the scatter of typical experiments on concrete.
This result suggests that one could perform only
one fracture test on a specific geometry in the
laboratory, calibrate and use LDPM to simu-
late different sizes to identify the macroscale
fracture energy and effective length of the FPZ
through a size-effect law. In addition, the cal-
ibrated size-effect law could be used to obtain
the nominal stresses of structures with various
geometries.

6 CONCLUSIONS
In this study, a large set of experimental

results on fracture and size-effect was simu-
lated using the Lattice Discrete Particle Model
(LDPM). The load-CMOD curve of a single
size notched beam under three-point bending,
and the compressive strength were used for
model calibration. The remaining experimen-
tal results, namely one splitting test and eleven
three-point bending tests of different beam sizes
and notch lengths, were used for model valida-
tion without parameter adjustment.

The predictions on splitting tests and on the
different beam geometries and sizes are over-
all in excellent agreement with the experimen-
tal data. The fracturing process is well cap-
tured by LDPM for both notched and unnotched
beams. The dissipated energy in shear consti-
tutes a large part of the total dissipated energy
in the post-peak. Fracture parameters using the
numerical results were identified through the
Universal Size Effect Law (USEL) which can
be predicted with a good accuracy.
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K. Nagai. Discrete mechanical models of
concrete fracture. Engineering Fracture
Mechanics, 257:108030, 2021.

[12] G. Cusatis, D. Pelessone, and A. Mencar-
elli. Lattice discrete particle model (ldpm)
for failure behavior of concrete. i: The-
ory. Cement and Concrete Composites,
33(9):881–890, 2011.
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