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Abstract. The present work extends non-extensive statistical formulation to the inter-event time dis-
tribution of acoustic emission (AE) events generated by the fracture process in plain concrete. The
time interval between two consecutive events can be defined as inter-event time and the distribution of
inter-event time is pivotal for understanding the underlying event-generating process. The magnitude
and inter-event time of AE events may be correlated, resulting in repeated intervals of clustered AE
activity and quiescence often observed in the concrete fracture process. The crack size is considered
to be correlated with AE wave magnitude (amplitude) therefore, the long-tailed magnitude distribu-
tion is usually used to infer the extent of cracking. Similarly, the inter-event time distribution can
be used as an indicator of the frequency or rate of occurring events. The AE phenomena resulting
from the fracture process exhibit non-Poissonian behavior, meaning that the time intervals between
AE events are not independent and identically distributed. AE inter-event time distribution in con-
crete has not been explored as much as magnitude distribution however, few studies including rock
fracture, concrete under compression, and seismology reported long-tailed behavior of the inter-event
time distribution often modeled by power-law, log-normal, Weibull, Gamma as well as q-statistical
exponential distributions. Recently, Burud and Chandra Kishen proposed two q-statistical distribu-
tion functions based on exponential and power law ansatzes. The power law ansatz-based distribution
function is shown to better represent AE magnitude distribution in concrete. We explore the expo-
nential ansatz-based distribution function to inspect AE inter-event time distribution. The variation of
q-statistical parameters for AE inter-event time distribution with respect to specimen size is discussed
in detail.

1 INTRODUCTION

Crack size and crack growth rate are funda-
mental aspects of fracture mechanics concern-
ing the behavior of cracks in materials. Crack
size refers to the physical dimensions or length
of a crack in material while crack growth rate

refers to the rate at which the crack size in-
creases as the material undergoes applied stress.
Both these aspects are relatively easier to com-
prehend in the presence of a single crack propa-
gating through material, conversely, it becomes
a daunting task in the presence of multiple or
clusters of cracks. The fracture process in
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concrete like heterogeneous materials is well
known for its multi-scale and multi-mechanistic
behavior characterized by a fracture process
zone ahead of the crack tip. Nowadays, acous-
tic emission monitoring has become an excel-
lent tool to observe such complex fracture pro-
cesses in materials. The AE monitoring relies
on acquiring stress waves emitted by the sud-
den release of strain energy due to cracking in
materials through piezoelectric sensors. Each
crack generates an omnidirectional stress wave
and, if it is large enough and above some thresh-
old level, it can be detected by multiple sensors.
Such detection of the AE waveform by multi-
ple sensors is recognized as an AE event which
can be further analyzed to determine the loca-
tion of the crack. Many studies have elaborated
on the correlation between crack size and am-
plitude/energy of acoustic emission waves and
derived useful parameters to evaluate the dam-
age state in materials [1–3]. Such studies in-
volve statistical tools accounting for multi-scale
cracking phenomena resulting in damage state
estimation based on crack size. However, not
only crack size but the occurrence of cracks
over the time scale can also be explored through
acoustic emission monitoring. The arrival of a
stress wave at the AE sensor location can be
regarded as an approximate crack occurrence
time. When several such cracks occur suc-
cessively, the time interval between cracks can
be considered as interevent time or interarrival
time. The interevent time is a random vari-
able and can be used to understand the temporal
patterns and dynamics of the transient fracture
process. Particularly in seismology, interevent
times are deeply studied to understand insights
into earthquake occurrence mechanisms, the
clustering in seismic events, and the probabil-
ity of future earthquakes.

The exponential distribution is commonly
used to model waiting times in various real-
world systems having memoryless property sig-
nifying the probability of future events does
not depend on past events. The exponential
distribution represents those Poissonian pro-
cesses that exhibit random and independent

events. Contrarily, many real-world systems
such as earthquakes, internet traffic, financial
market volatility, etc exhibit long-tailed behav-
ior caused by non-Poissonian processes, and are
often described by Gamma, Weibull, lognormal
and other long-tailed distributions. The non-
Poisonian processes do not exhibit a constant
rate of event occurrence mainly caused by the
clustering of events, memory effects, and long-
range correlations.

Although fracture mechanics of concrete has
been well studied at a macroscopic scale pro-
viding some insightful laws and mathematical
models, the physical description of microme-
chanics is still under investigation and not yet
well understood. Acoustic emission observed
during the fracture process mainly contributes
to the understanding of concrete micromechan-
ics considering abundant studies in the litera-
ture. In the present work, we seek palliative
treatment based on entropy formulation for the
problem of modeling inter-event time distribu-
tion rather than approaching it from the first
principles of physics. Such an approach has
been proven effective in seismology where col-
lective properties of earthquakes have been re-
produced in statistical models [4, 5]. Therefore,
there is a hope to discover consistent statistical
patterns and trends in the AE data which can
be useful for understanding fracture process and
structural health monitoring applications.

2 MOTIVATION
Seismic events in geology and as well as

acoustic emission events in material fracture
have striking similarities. Earthquakes are
mainly divided into main shocks, foreshocks,
and aftershocks based on their temporal and
spatial relationship to one another. The main
shock is the largest and most significant earth-
quake in the sequence. The preceding and suc-
ceeding earthquakes to the main shock are the
foreshocks and aftershocks respectively. Al-
though foreshocks can provide valuable insights
into the processes leading up to a main shock,
they are not a necessary precursor for every sig-
nificant earthquake. On the other hand, after-
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shocks are a common occurrence after a signif-
icant earthquake and are an integral part of the
seismic sequence. Due to the abundance of af-
tershock earthquakes, extensive studies on af-
tershocks are available in the seismology liter-
ature compared to foreshocks which led to sev-
eral empirical and statistical models for describ-
ing the inter-event time distribution of earth-
quakes. In 1894, Omori [6] proposed an em-
pirical Equation 1a known as Omori’s law stat-
ing the rate of aftershocks decreases over time
following a power-law decay . Utsu [7] mod-
ified version of Omori’s law in 1961 expressed
in Equation 1b where t is the time after the large
event, k and c are the productivity (depending
on the magnitude of the main shock) and case-
dependent time scale parameters respectively.
The parameter p in Equation 1b is considered
as a universal exponent p ≈ 1.

n(t) =
k

c+ t
(1a)

n(t) =
k

(c+ t)p
(1b)

There is a common consensus in seismology,
that earthquakes follow Omori’s law on short
time scales while on long time scales earth-
quakes exhibit exponential behavior for waiting
time distribution possibly due to the indepen-
dence of earthquake events over the long time
scales. Therefore, the Gamma distribution pro-
posed by Corral [8] became pivotal at an in-
termediate time scale due to its validity over
many different geographic regions. However,
the Gamma distribution assumes a memoryless
process with stationarity which again questions
its validity.

Unlike seismic activity, primarily triggered
by stress redistribution along the tectonic plates
following a large earthquake, acoustic emis-
sion in the material fracture is influenced by
local stress concentrations and crack interac-
tions within the material. The processes govern-
ing acoustic emission are complex and involve
multiple micro-cracks and interactions between
them. Moreover, the time scale of acoustic

emission events and earthquakes is vastly dif-
ferent. Therefore, there is a need for a different
approach that can describe AE inter-event time
statistics.

A recent approach based on Tsallis entropy
[4] provides a generalized perspective on earth-
quake statistics. The non-extensive statistical
mechanics (NESM) based on the Tsallis en-
tropy has been successfully applied to study the
collective properties of earthquake [5] which
includes frequency-magnitude distribution as
well as spatio-temporal (inter-event time and
distance) distribution. A similar approach was
initiated to study acoustic emission in the mate-
rial fracture as well [9–11]. Saltas et al. [9] con-
cluded the suitability of NESM for brittle rocks
under monotonic uniaxial compression using
the q-exponential function. Greco et al. [10]
also used the q-exponential function to describe
inter-event time distribution for concrete and
basalt under compression. Burud and Chandra
Kishen [11] explored the frequency-magnitude
relationship through NESM formulation and
proposed two q-deformed distributions based
on power law and exponential ansatzes. The
present work extends the application of NESM
to inter-event time distribution observed in con-
crete fracture. Section 3 briefly explains Tsal-
lis entropy and exponential ansatz-based NESM
formulation for the inter-event time distribution.
The experimental setup is briefly explained in
Section 4. The inter-event time distribution
and resulting q-statistical parameters obtained
from experimental data are illustrated in Sec-
tion 5 followed by the discussion on the phys-
ical meaning of the q-statistical parameters in
Section 6.

3 NON-EXTENSIVE STATISTICAL ME-
CHANICS

Consider a one-dimensional random variable
X with probability density function p(x). The
Tsallis entropy Sq for x is given as:

Sq ̸=1 = kB
1−

∫∞
0

pq(x) dx

q − 1
(2)
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where q is known as the entropic index and kB
is the Boltzmann constant. We assume kB = 1.
The Boltzmann constant is a conversion factor
to link the average kinetic energy of particles
with the thermodynamic temperature of the gas
which is not relevant in the present study. The
maximization of the Tsallis entropy subjected to
some constraints results in a distribution func-
tion proposed by Silva et al. [12] expressed in
Equation 3.

p(x) =

[
1− (1− q)

(2− q)
(x− x̄q)

] 1
(1−q)

(3)

where x̄ is escort normalized mean ex-
pressed as x̄q =

∫∞
0

xπq(x)dx and πq(x) is es-
cort probability given as by,

πq(x) =
pq(x)∫∞

0
pq(x)dx

(4)

To obtain the NESM formulation for repre-
senting inter-event time distribution, we substi-
tute Equation 5 in Equation 3 and obtain cumu-
lative probability distribution function proposed
by Burud and Chandra Kishen [11] (where de-
tailed derivation and description is available) as
expressed in Equation 6.

x− x̄q = ατ10
βτ ξ (5)

P (T ≥ ξ) =

[
1− (1− qτ )

(2− qτ )
ατ10

βτ ξ

] (2−qτ )
(1−qτ )

(6)

qτ → 1 P (T ≥ ξ) = e−ατ10βτ ξ

(7a)

qτ → 1.5 P (T ≥ ξ) =
1

1 + ατ10βτ ξ
(7b)

Figure 1: a) First few Acoustic emission events
over the time scale and, b) inter-event time.
mi,ti, and τi are the magnitude, arrival time, and
inter-event time of the ith event.

The parameters of the distribution function
(Equation 6) can be determined by fitting it over
experimentally observed inter-event time. Al-
though the parameters are defined for variable
ξ, we add subscript τ indicating the inter-event
time which will be later useful to compare re-
sults of the present work to the q-statistical pa-
rameters for AE magnitude distribution from
[11]. The entropic index qτ quantifies the long-
tailed behavior of the distribution which ranges
from 1 to 2. Equation 6 results in Equations
7a and 7b in the limit, qτ → 1 and qτ → 1.5
respectively. The inter-event time needs to be
scaled logarithmically as ξ = log10τ . For sim-
plicity ( avoiding rules of change of variable),
if ξ = log10τ is substituted in Equations 7a
and 7b results in P (T ≥ τ) ∝ e−ατ τβτ and
P (T ≥ τ) ∝ 1

1+ατ τβτ
respectively. The for-

mer expression is a stretched exponential and
becomes exponential distribution βτ = 1 ex-
hibiting exponential tail. The latter expression
represents power law-like distribution signify-
ing long-tailed distribution. The parameters ατ

and βτ are the location and scale parameters of
the distribution. The location parameter gives
an idea of the central tendency of the distri-
bution while the scale parameter controls the
stretch or shape of the distribution.
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Figure 2: a) Loading history and acoustic emis-
sion events over the test duration in a large beam
(B2), b) Average vs. instantaneous event rate.

4 EXPERIMENTAL SETUP
To study the AE inter-event time distribu-

tion, plain concrete notched beams of three
different sizes were tested under three-point
bending consisting of three specimens for each
beam size as shown in Table 1. For main-
taining monotonically increasing quasi-static
loading, the crack propagation rate was con-
trolled using crack mouth opening displacement
(CMOD/clip gauge) at 1 µm/s. Six resonant-
type piezo-electric acoustic emission sensors
R6D of Physical Acoustic Corporation were at-
tached to the beam surface at specific locations
for the acquisition of acoustic emissions. Read-
ers are advised to refer [11] for a detailed de-
scription of the experimental setup, AE sensor
position, and load-deformation curves.

Table 1: Details of beam dimensions

Designation
Depth
(mm)

Width
(mm)

Span
(mm)

Notch
(mm)

Small 75 50 337.5 15
Medium 150 50 675 30

Large 300 50 1350 60

Figure 3: Probability distribution of inter-event
time for a large beam (B2).

5 RESULTS
5.1 INTER-EVENT TIME

The applied load, controlled by crack mouth
opening displacement, allowed stable crack
growth in the beam specimens. Although the
loading rate is constant, the micro-cracks oc-
curring at the crack tip in concrete-like hetero-
geneous material is a spatio-temporal stochastic
process. The instance of every crack occurrence
releases strain energy which travels through the
material as an omnidirectional stress wave. The
stress wave acquired by an AE sensor is known
as hit and if the same wave is acquired by multi-
ple sensors then it is counted as an AE event ac-
cording to the definition. The arrival time of the
stress wave at the first sensor and its amplitude
in dB is considered as the occurrence time and
magnitude of the event. Consequently, every
AE event acquired during the test can be rep-
resented as a pair of random variables (mi, ti)
for i = 0, 1, 2, ...N − 1, where mi and ti repre-
sent magnitude and arrival time of the ith event
respectively. Figure 1 shows the first ten AE
events acquired during one of the specimens.
The occurrence of the first AE event is consid-
ered as initiation of the AE activity. The inter-
event time of the consecutive events can be de-
termined as τi = ti − ti−1 for i = 1, 2, ...N ,
where N is the total number of AE events. De-
scriptive statistics of the inter-event time (on a
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Table 2: Statistics of inter-event time distribution

Beam No.
Size

(mm) # events
Min.
(s)

Max.
(s)

Mean
(s)

Std. dev
(s)

M.A.D.
(s)

Test Time
(s)

Small
B1 75 9008 0.0021 8.7 0.091 0.221 0.083 820.1026
B2 75 1388 0.0042 51.4 0.621 1.931 0.649 861.4187
B3 75 10651 0.0022 34.3 0.096 0.438 0.092 1023.657

Medium
B1 150 7956 0.0018 9.4 0.140 0.322 0.142 1117.481
B2 150 19142 0.0019 17.5 0.072 0.342 0.078 1380.382
B3 150 16446 0.0019 21.7 0.077 0.314 0.076 1267.03

Large
B1 300 26664 0.0019 33.7 0.035 0.245 0.031 931.4919
B2 300 27169 0.0018 25.6 0.038 0.263 0.035 1041.804
B3 300 34166 0.0018 12.4 0.038 0.179 0.034 1286.938

Min.- Minimum, Max. - Maximum, M.A.D. - Mean absolute deviation
Test time is the time between the first and last AE event

linear scale) distribution for all the tested beams
are given in Table 2. The mean absolute devi-
ation given in Table 2 is a robust measure of
dispersion in the presence of extreme events.
The significant difference between mean abso-
lute deviation and standard deviation indicates
the deviation of inter-event time distribution
from normality. Figure 2(a) shows the loading
history and the AE events over the test dura-
tion. One can simply estimate the average rate
of AE events occurrence (No. of events/unit
time=1/mean(τ ) or Time of test/No. of events)
from the statistics which increases with respect
to size. However, Figure 2(b) shows the com-

parison between the average event rate and in-
stantaneous event rate determined by averaging
over 10 seconds non-overlapping window for a
large beam (B2). As mentioned earlier, AE in
concrete is a non-Poissonian process exhibiting
time-dependent instantaneous event rate occur-
rence as shown in Figure 2(b). The instanta-
neous event rate rises and peaks around 500 sec-
onds indicating the clustering of events which
then gradually decreases till the end. The in-
stantaneous event rate obviously depends on the
loading rate, crack extent, and size of the speci-
men.

Figure 4: Cumulative distribution on log scale
comparing q-statistical and Gaussian distribu-
tion fit on experimental data.

5.2 q-STATISTICAL PARAMETERS

The inter-event time distribution for a large-
sized beam (B2) is shown in Figure 3. The
scale of the inter-event time ranges in order
from 10−3 to 101 seconds therefore, the log-
arithmic scale is inevitable for the analysis.
Unlike exponential distribution, the inter-event
time distribution of AE events on a logarith-
mic scale shows a right-tailed bell-like curve
or skewed Gaussian-like distribution. Figure 4
shows the cumulative frequency distribution of
inter-event time distribution fitted with Equa-
tion 6 along with the Gaussian distribution. We
do not intend to elaborate on the shortfalls of
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the Gaussian distribution for modeling the long-
tailedness, rather the Gaussian distribution is
preferred for comparison due to two reasons.
First of all, the right-skewed exponential distri-
bution, mostly linked to waiting time distribu-
tions, is inappropriate to compare with the bell-
like experimentally observed distribution. Sec-
ondarily, Gaussian distribution has an exponen-
tially decaying tail by which we intend to illus-
trate the relative difference between the tails of
Gaussian distribution and observed inter-event
time distribution. The NESM-based cumula-
tive distribution function fits well with the ex-
perimental data by appropriately modeling the
long-tailed behavior.

Figure 5: a) Variation of applied load and inter-
event time over test time, b) Evolution of q-
statistical parameters over time

Figure 5 shows the evolution of q-statistical
parameters for a large-sized beam (B2). The
scatter plot in Figure 5(a) shows waiting time
(log10τ ) associated with the AE events for the
test duration. In Figure 5(b), the entropic in-
dex qτ increases during the initial phase of AE
activity and decreases slightly before approach-
ing a constant value signifying the probability
in the distribution tail is constant. Similarly, the
location parameter ατ increases and decreases
over time indicating the change in the rate of AE
events. The scale parameter βτ too approaches
a constant value after rising steadily indicating
convergence of the distribution shape. Compar-

ison of these parameters across the specimen
size at failure is shown in Figures 6 and 7. The
entropic index qτ shows a slight increase with
the increase in beam size as shown in Figure 6
however, the variation in qτ is in a small range
near qτ ≈ 1.5. The strong size effect is present
in the parameters ατ and βτ as evident from Fig-
ure 7.

Figure 6: Size dependence of qτ parameters.

6 DISCUSSION
6.1 PHYSICAL MEANING

The inter-event time distribution, as shown
in Figure 3, can be divided roughly into the
body and tail parts. The distribution body
refers to the central part where the majority of
the probability mass is concentrated. The q-
statistical framework defines the shape of the
evolving inter-event time distribution by appre-
hending the body and tail part coherently. The
entropic index qτ defines the probability mass in
the tail region. Similarly, the bell-like distribu-
tion body can be described by ατ and βτ as loca-
tion and scale parameters. The location param-
eter indicates the central tendency of the distri-
bution while scale parameters characterize the
dispersion in the distribution shape (For exam-
ple, the shape of the Gaussian distribution can
be defined by the mean as a location parameter
and the standard deviation as a scale parame-
ter). Characterization of the distribution tail re-
gion by assigning a separate index qτ is a pivotal
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contribution of the NESM formulation. Most of
the frequent AE activity is captured by the dis-
tribution body which can be considered as back-
ground activity. The extreme events occurring
in the tail region, which are not frequent, play a
crucial role in the failure process. Higher inter-
event time signifies a period of AE quiescence
where the time is consumed to accumulate the
stress either to sudden release or after suddenly
releasing it. Therefore, the entropic parameter
qτ is significant for damage detection.

Figure 7: Size dependence of ατ and βτ param-
eters

6.2 COMPARISON WITH MAGNITUDE
ENTROPIC INDEX qm

Despite the randomness of AE inter-event
time, the entropic parameter qτ clusters around
qτ ≈ 1.5 for the three beam sizes while the pa-
rameters ατ and βτ captures size dependence of
the distribution. Similar q-statistical parameters
for the AE magnitude distribution of the same
experiment were determined using power law
ansatz-based NESM formulation and reported
in [11]. As the present work extends NESM
formulation to inter-event time distribution, for
the integrity of the work, we discuss the collec-
tive behavior of entropic index qm determined
for magnitude distribution and associated en-
tropic index qτ . The relation between entropic
index qm and qτ is shown in Figure 8. The
entropic index qm relates with the b-value de-

termined by the Gutenberg-Richter law by the
relation b = (2−qm)

(1−qm)
. The universality of b-

value b ≈ 1 at failure is well known in the
literature which indicates possible universality
of entropic index qm ≈ 1.5. Interestingly, the
clustering of qτ ≈ 1.5 might also indicate the
possible critical value of qτ for a given load-
ing rate. Consequently, we propose a hypothet-
ical duality relation qm + qτ ≈ 3. The rela-
tionship results in a possible critical line for en-
tropic indices as shown in Figure 8. Such hypo-
thetical duality relationship between inter-event
time and distance has been proposed in [13, 14]
for exhibiting collective spatio-temporal behav-
ior of earthquakes. Figure 9 shows the varia-
tion of qm + qτ with respect to the beam sizes
which does not exhibit any size dependence.
The relationship is, although speculative and
lacks mathematical rigor, experimentally ob-
served and needs further investigation. More-
over, the existence of such a relationship at crit-
ical loading may benefit the understanding and
damage evaluation in non-critical type load ap-
plications such as dynamic, fatigue, and creep.

Figure 8: The relation between entropic indices
qτ and qm. The dashed line represents a possi-
ble critical line obtained from the hypothetical
relation qm + qτ ≈ 3.
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Figure 9: Size dependence of qm + qτ

7 CONCLUSIONS
The present work extended NESM formula-

tion to the acoustic emission inter-event time
distribution observed during quasi-static load-
ing of concrete beams under three-point bend-
ing. The exponential ansatz-based formulation
appropriately models the evolving inter-event
time distribution resulting in the entropic pa-
rameter qτ and two distribution parameters ατ

and βτ . The collective behavior of entropic in-
dices qm and qτ obtained from the AE inter-
event time and magnitude distribution respec-
tively are also discussed in brief. A hypothet-
ical relation qm + qτ ≈ 3 obtained from the
experimental data is an important contribution
of the present work. The present work focused
on monotonically increasing quasi-static load-
ing which was controlled by crack mouth open-
ing displacement resulting in the variation of
the inter-event time along a fixed band. How-
ever, in the case of fatigue loading, the varia-
tion in the inter-event time will be more erratic
as fatigue failure is highly uncertain with signif-
icant scatter. The ability of NESM formulation
to model such distribution will be addressed in
the future.
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