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Abstract: This paper investigates the application of discrete exterior calculus (DEC) to predict the 
material performance of concrete (mortar and aggregates). The aim is to simulate the discrete and 
heterogenous structure of concrete directly to better predict local phenomena and their impact on 
apparent global properties. Towards this goal, an existing DEC formulation of linear elasticity is ex-
tended to describe incremental elastic-plastic material behavior with isotropic strain hardening. A 
Voronoi tessellation of the physical domain is used to represent different constituents of the concrete, 
where each cell is assigned a local material model and material properties. The interaction of the cells 
is described using the Delaunay dual tetrahedralization of the tessellation. Constructing the mesh in 
this order required a new boundary closure for the DEC formulation, which is also presented herein. 
The formulation is validated through simulation and compared to finite element analysis obtained 
from Abaqus. Simulations include compression of cubical specimens composed of 1) mortar with 
uniform properties and elastic-plastic response; 2) mortar, as before, but with different volume frac-
tions of aggregate added, having purely elastic response; as well as 3) some initial simulations with 
the formation of cracks from specimens in tension. Excellent results are obtained when compared to 
the finite-element analysis, laying the foundation to simulate more complex phenomena in the future. 
 

1 INTRODUCTION 
The discrete, heterogeneous, and spatially 

varying structure of concrete influences both 
its local and apparent global properties, as well 
as its response to applied loads – especially as 
these structures evolve. A mechanical example 
is the type, volume fraction, size, and arrange-
ment of aggregates, which has a significant 
impact on stress response at subcritical loads 
and the dynamics of cracks beyond these lim-
its [1-4]. Applied loads can also be interpreted 
to include the response of the material is mul-
tiphysics processes like thermal, chemical, 
electrical, or fluid processes [5-8].   

The key structures that influence the mate-
rial response of concrete are often well above 
the atomic scale, but do not globally satisfy the 
continuum assumption. While there are many 
different approaches to modelling concrete 
with continuum methods like finite elements – 
such as experimentally validated empirical 
models [9], remeshing [10], meshing multiple 
constituent domains individually [11], etc – 
they cannot represent the underlying physics 
from first principles.  

Discrete exterior calculus (DEC) is a funda-
mentally discrete approach that uses the geom-
etry and topology of a cell complex to describe 
the evolution of local properties and physical 

Admin
Text Box
https://doi.org/10.21012/FC11.092376



Pieter D. Boom, Madyan A. Al-Shugaa and Muhammad K. Rahman 

 2 

processes [12,13]. Bypassing a global contin-
uum assumption, this approach can naturally 
capture the impact of structure, heterogeneity, 
and discontinuities [14-17]. Beginning with a 
cell complex to represent material structure, 
creates natural paths for discontinuities (topo-
logical changes) to emerge and evolve. DEC 
also enables physical phenomena to evolve 
differently on lower dimensions skeletons of 
the cell complex. For example, processes like 
diffusion or fracture mechanics can be defined 
differently within the cell, across a face, or 
along an edge. It can also help model constitu-
ents that can be considered lower-dimensional 
objects, such as fibers or particulates. 

Previously, DEC has been applied to pre-
dict linear elastic behavior and validated for 
Poisson’s ratios from -0.95 to 0.45 for a vari-
ety of canonical mechanical problems [18]. 
This was inspired by the ideas presented in 
Ref. [19]. In this formulation, displacements 
are a vector-valued 0-cochain representing the 
movement of cell centers. The interaction be-
tween cells is described on the edge connect-
ing the two cell centers - a discrete displace-
ment gradient 1-cochain. The local cell-by-cell 
constitutive relationships are imposed through 
a non-diagonal material Hodge star, resulting 
in a 2-cochain on the faces of each cell – dis-
crete forces. Finally, the balance of linear mo-
mentum is enforced at cell centers, once again 
as 0-cochain.  

The goal of this paper is to extend the exist-
ing formulation of linear elasticity using DEC 
to simulate elastic-plastic behavior with iso-
tropic hardening. The aim is to build up the ca-
pabilities of the theory and software imple-
mentation to study the mechanical perfor-
mance of concrete relative to its inherent dis-
crete structure, especially as it begins to de-
grade and fail. To validate the model, simula-
tions will be presented in the elastic and plastic 
region, as well as some initial simulations with 
tensile fracture. 

This paper is organized as follows: Section 
2 presents a brief review of an existing formu-
lation of linear elasticity using DEC, the exten-
sion to elastic-plastic behavior with isotropic 
strain hardening and a new boundary closure. 
Numerical simulations and a comparison with 

Abaqus finite element software [20] are then 
presented in Section 3. Finally, conclusions are 
drawn in Section 4. 

2 PREDICTION OF MATERIAL PER-
FORMANCE USING DISCRETE EXTE-
RIOR CALCULUS 

In this paper, the underlying theory and no-
tation of discrete exterior calculus (DEC) are 
based on Refs. [12,13] and the formulation of 
linear elastic material behavior based on Ref. 
[18]. Here a brief overview of the DEC ap-
proach is given, highlighting the new exten-
sion to plasticity, and a new boundary closure 
is presented. 

2.1 Basic formulation 
To begin, consider a physical specimen oc-

cupying the domain Ω. To predict the mechan-
ical performance of the specimen using DEC, 
the domain is first tessellated with Voronoi 
cells. If the specimen has a material structure, 
the cells are created to coincide with that struc-
ture. For example: at longer length scales this 
could be used to represent aggregates, fibers, 
or rebar in a cement mortar, or at shorter 
length scales it could represent sand particles 
or small voids in a cement paste. 

With the tessellation in hand, a material 
model and material properties matching the lo-
cal conditions are then assigned to each cell. 
These are assumed constant within each cell, 
and potentially vary discontinuously from one 
cell to another. In the same way, the interface 
between cells can also be assigned different 
models and properties to describe how the 
cells interact. This could be used, for example, 
to represent an interfacial transition zone 
(ITZ). 

Associated with Voronoi tessellation is a 
dual Delaunay tetrahedralization. This dual 
mesh is used in DEC to describe the interac-
tion of the Voronoi cells. Therefore, the pri-
mary unknown is chosen to be a vector-valued 
0-cochain of displacements at vertices in the 
Delaunay tetrahedralization (the cell centers of 
the Voronoi tessellation): 

(𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠) = u⋆" (1) 
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A discrete displacement gradient is then 
computed with a dual vertex-edge boundary 
operator (a discrete exterior derivative). This 
produces a vector-valued 1-cochain on edges 
in the Delaunay tetrahedralization, the edges 
connecting adjacent Voronoi cell centers. De-
pending on the application, this can be used to 
represent the total strain or the incremental 
strain. The latter is used in this paper: 

𝜖⋆# = 𝑑⋆"Δu⋆" (2) 
At this point the constitutive relationship is 

applied using a non-diagonal material Hodge 
star, producing discrete stresses on the faces 
between adjacent Voronoi cells (a primal vec-
tor-valued 2-cochain). In this paper we use 𝜏 to 
denote stress since 𝜎 has a special meaning in 
DEC: 

𝜏$ =⋆%&'⋆# 𝜖⋆# (3) 
Formally, the material Hodge star is com-

posed of a discrete sharp musical isomorphism 
to the center of each Voronoi cell, the applica-
tion of the constitutive relationship cell-by-
cell, a discrete flat musical isomorphism back 
to edges, and finally a geometric diagonal 
Hodge star to the faces of the Voronoi tessella-
tion: 

𝜏$ = ⋆()*⋆# ♭⋆#𝑃#⋆#78889888:
⋆!"#
⋆%

𝜖⋆# (4) 

Previously it was found to be advantageous 
to decompose the application of the constitu-
tive relationship into components related to 
shape change and the combination of volume 
change and rotation [18]: 

𝑃 = 2𝜇𝐼>
+,&-)

+ 𝑃@⏟
.*//1*'

 (5) 

This eliminates the need for approximate 
discrete musical isomorphisms in the im-
portant shape change component of the consti-
tutive relationship. This is justified because the 
flat and sharp are inverse transformations in 
the continuous theory: 

 
 

𝜏$ =⋆()*⋆# (2𝜇♭⋆#𝐼#⋆#															 

													+♭⋆#𝑃@#⋆#)𝜖⋆# 
 

					≈⋆()*⋆# D2𝜇 + ♭⋆#𝑃@#⋆#E𝜖⋆# (6) 

Finally, once the discrete stresses have been 
computed on Voronoi faces, the balance of 
momentum in each cell is computed using the 
divergence. This is done using the face-cell 
boundary operator for the Voronoi tessellation 
(another discrete exterior derivative). This 
boundary operator conveniently ends up being 
the transpose of the boundary operator used 
previously. Body forces can also be added at 
this point if need be: 

𝑑$𝜏$ + f2 = 0  

(𝑑⋆")3𝜏$ + f2 = 0 (7) 

2.2 Extension to plasticity 
Initially, the fourth-order tensors describing 

the constitutive relationship (𝑃, 𝑃@) are linear 
elastic (𝑃45 , 𝑃@45). The applied strain is in-
creased incrementally until the equivalent total 
stress in one or more cells in the tessellation 
exceeds its locally defined yield stress [21]: 

𝜏!"⋆$ = #3𝜏%!&,(,)
⋆$ 𝜏%!&,(,)⋆$

2
> 𝜏*+,-. (8) 

where 

𝜏647,9,:⋆" = H1 −
𝛿9,:
3 M 𝜏9,:

⋆", (9) 

𝜏⋆" = 𝜏;<;';&/⋆" + 𝑃#⋆#𝜖⋆# (10) 

Previously, the DEC formulation was only 
validated up to this point. Now, we extend the 
formulation to include plasticity. The constitu-
tive relationship (𝑃, 𝑃@) here now follows the 
Prandtl-Reuss model [22] with the Von Mises 
yield surface and isotropic strain hardening: 

𝑃 = 𝑃45 + 𝑃=5  

𝑃 = 𝑃45 −
2𝜇
𝑆 𝜏647,9,:⋆" 𝜏647,>,5⋆"  (11) 

or  
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𝑃@ = 𝑃@45 + 𝑃@=5  

𝑃@ = 𝑃@45 −
2𝜇
𝑆 𝜏647,9,:⋆" 𝜏647,>,5⋆"  (12) 

where 

𝑆 = 𝐽$⋆" P1 +
𝐻
2𝜇R (13) 

𝐽$⋆" = 𝜏647,9,:⋆" 𝜏647,9,:⋆"  (14) 

𝐻 =
𝜕

𝜕𝜖=⋆"
T𝐽$

⋆"

3  (15) 

𝜖=⋆" = T2
3 𝜖=,9,:

⋆" 𝜖⋆"=,9,: (16) 

This model is often used to predict the per-
formance of metals, therefore in the future a 
Drucker-Prager model [23], which is more 
commonly used for concrete, will also be im-
plemented.  

2.3 Boundary closure 
In the original application of DEC for linear 

elasticity [18], the Voronoi tessellation of the 
domain was computed as a byproduct of the 
Delaunay tetrahedralization. This required a 
closure to account for Voronoi cells at the 
boundary that were truncated (incomplete).  

In this paper, the Voronoi tessellation is 
computed directly from the domain of the 
specimen under consideration. This requires a 
different boundary closure. In this case, it is 
because the Delaunay edges at the boundary 
are truncated (incomplete), rather than the Vo-
ronoi cells. A two-dimensional depiction is 
given in Figure 1. In other words, the bound-
ary edges connect the center of a boundary 
Voronoi cell and extend toward the boundary, 
but do not have a cell outside the domain to 
connect to at the other end. This means that 
discrete displacement gradient and the discrete 
flat musical isomorphisms are ill defined at the 
boundary.  

 

Figure 1: Depiction of truncated (incomplete) edges in 
the dual Delaunay triangularization and the additional 

points added to close the model. 

To close the model, additional displace-
ments are added to the centers of Voronoi 
faces on the boundary. This is similar in prin-
ciple to the approach taken in Ref. [24]. The 
discrete displacement gradient is then com-
puted between the displacements of the bound-
ary cell and its boundary face. This too is 
shown in Figure 1. 

The discrete flat musical isomorphism is 
also modified at the boundary to take values of 
the boundary Voronoi cell and project it along 
the truncated Delaunay edge extending to the 
boundary. This is consistent with the piece-
wise line integration used elsewhere in the 
mesh to compute the discrete flat. 

Overall, the new approach allows the use of 
a more useful and complete tessellation di-
rectly, and is simpler than the previous closure 
in theory and implementation.  

The final system that is solved is then in the 
following form: 

This is a square system that describes the 
mechanical behavior of the specimen under in-
vestigation. In this form, it is evident how to 
define both displacement and force boundary 
conditions. This will also reduce the size of the 
system that needs to be solved. 

Ubalance	of	momentumsurface	forces c =						 

												d
(𝑑⋆")3

D𝑑+?1@⋆" E3
e ⋆()*⋆# ♭@⋆#𝑃#⋆# 

																					[𝑑⋆" 𝑑+?1@⋆" ] h u⋆#
u+?1@# i 

(17) 
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3 NUMERICAL RESULTS AND DIS-
CUSSION 

To demonstrate the performance of the ex-
tended DEC approach and new boundary clo-
sure, a series of simulations are presented with 
increasing complexity. The Voronoi tessella-
tions are generated using Neper [25] and the nu-
merical implementation of the theory is built on 
top of the MATLAB library presented [15]. The 
simulations presented here are for the compres-
sion tests on cubic specimens, first for a cube of 
uniform cement mortar, and then a cube of mor-
tar with aggregates. Finally, some initial simu-
lations are presented for specimens in tension 
which fail due to crack initiation and propaga-
tion. The boundary conditions applied in these 
simulations are prescribed displacements in the 
z-direction, and fixed displacements in the x- 
and y-directions on the z-min and z-min sur-
faces. The remaining 4 sides are free surfaces 
(zero forces). 

 Where possible, the results are compared 
with simulations results from Abaqus [20] (Fi-
nite elements). For the present simulations, we 
expect to get very close agreement between the 
two methods, as most end before the onset of 
major damage would occur. This is important 
as the current DEC formulation has no real 
damage model, except for the ability to fracture 
surfaces that exceed some tensile strength. In 
the future, the expectation is to simulate dam-
age with the DEC formulation relative to the 
material structure, rather than implementing an 
empirical damage model. 

3.1 Mortar only  
(homogeneous material) 

The simplest case is to simulate pure mortar 
with uniform properties. This does not account 
for any microscale structure with sand, voids, 
etc – it models the material as a continuum. 
Previously, the DEC formulation has been val-
idated in the elastic region for Poisson’s ratios 
from -0.95 to 0.45 [18]; therefore, the focus 
here is on the plastic region. The material 
properties used for these simulations are as 
follows (Based on Ref. [1]): 

 

𝐸 = 42.8𝐺𝑃𝑎, 𝜈 = 0.2	 

𝜏A;)/B = 39.9𝑀𝑃𝑎 

The stress response of the uniform blocks 
up to 0.2% strain are shown in Figure 2, both 
with (right) and without (left) isotropic strain 
hardening. Positive stresses and strains are to 
be interpreted here as compressive stress. The 
meshes used are a regular orthogonal tessella-
tion (top) and a quasi-random tessellation (bot-
tom), both with 1000 cells. The meshes are 
shown in Figure 3.  

  

  

Figure 2: Stress-strain curves of mortar only. Top: regu-
lar orthogonal mesh; Bottom: quasi-random mesh; Left: 

pure plasticity; Right: Isotropic hardening. 

  

Figure 3: Meshes with 1000 cells. 

As expected, the results for pure plasticity 
are linearly increasing in the elastic region, 
then are nearly horizontal in the plastic region. 
In the case of isotropic hardening, the figures 
show a more gradual flattening out of the 
curves and a higher maximum stress. This is 
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consistent with the growth of the yield surface 
due to the hardening.  

Results generated with Abaqus are plotted 
in the same figure. The Abaqus results were 
generated with about 230,000 linear tetrahe-
drons, as shown in Figure 4. Relative to the 
Abaqus results, the DEC formulation slightly 
under-predicts the maximum stress both in the 
case with and without hardening. For pure 
plasticity, the maximum stress of the Abaqus 
results at 2% strain is about 40.65 MPa, 
whereas in DEC it remains about 39.7MPa – 
the yield stress being 39.9MPa. The DEC re-
sults remain around 39.7 all the way up to 5% 
strain. 

 

Figure 4: Abaqus mesh with ~230,000 tetrahedrons. 
The stress fields of all three normal stresses 

and the 𝑥𝑧-shear stresses are plotted in Figures 
5-7, obtained from both the DEC formulation 
(regular orthogonal and quasi-random meshes) 
and Abaqus. In this case, compressive stress is 
computed as a negative value. Furthermore, 
finer meshes are used to get a closer plotting 
resolution to Abaqus, with approximately 
8000-9000 cells. The results are from 0.2% 
strain with isotropic strain hardening and taken 
from one of the vertical mid-planes of the 
specimen. The figure shows excellent agree-
ment in both stress magnitudes and patterns 
compared with the FEA.  

3.2 Mortar and aggregate  
(heterogeneous material) 

Increasing the complexity of the simula-
tions, aggregates are now added to create a 
concrete cube. This is done by assigning a dif-
ferent material model and material properties 
to Voronoi cells selected to represent the  

  

  

Figure 5: Stress distribution in the block at 0.2% strain 
using DEC on regular orthogonal mesh. 

  

  
 

Figure 6: Stress distribution in the block at 0.2% strain 
using DEC on quasi-random mesh. 

  

  
 

Figure 7: Stress distribution in the block at 0.2% strain 
using Abaqus. 
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aggregates. In this case, the aggregates are as-
sumed to be elastic throughout the simulation 
range, and have the following material proper-
ties (Based on Ref. [1]): 

𝐸 = 70𝐺𝑃𝑎, 𝜈 = 0.2 
It is assumed that mortar cells have the 

same elastic-plastic response with isotropic 
hardening and the same material properties as 
before. 

Figure 8 shows the variation in stress-strain 
obtained by adding different volume fractions 
of aggregates. Note that this approach allows 
for aggregates to be adjacent to one another 
and assumes that the mortar and aggregates are 
perfectly bonded. In the future, different inter-
face characteristics will be implemented to 
simulate the ITZ. As expected, the addition of 
an increasing volume fraction of aggregates in-
creases the maximum strength of the speci-
men. 

  

Figure 8: Stress-strain curve of cement mortar with dif-
ferent volume fractions of aggregates. 

Figure 9 shows a comparison of the 𝑧𝑧-nor-
mal stress field with (bottom) and without 
(top) the inclusion of a 15% volume fraction of 
aggregates using meshes with 1000 (left) and 
8000 (right) cells. While the volume fractions 
are the same, the aggregate size is different us-
ing the two meshes. The figure highlights the 
higher compressive load carried by the aggre-
gates, which was previously seen in the stress-
strain curves (Figure 8), as well as the local-
ized reaction of the aggregates enabled by the 
discrete approach. 

3.3 Mortar and aggregate with cracks  
(discontinuous material) 

To assess the ability of the discrete approach 
to introduce and propagate cracks, the DEC for-
mulation is applied to the same concrete cubes, 

but now in tension. The properties of the mortar 
and aggregates remain the same, with the addi-
tion of a maximum tensile strength for the mor-
tar (Based on Ref. [1]): 

𝜏C4DE954 = 3.9𝑀𝑃𝑎 

 

 

Figure 9: Stress field with (Bottom) and without (Top) 
a 15% volume fraction of aggregates. Left: 1000 cell 

mesh; Right: 8000 cell mesh 

The tensile strength is interpreted here as a 
local property, rather than a global property. As 
the tensile stress at Voronoi faces in the mesh 
exceeds the tensile strength of the mortar, they 
are assumed to fail. Once the face fails, the ma-
terial model is changed so that no load is sup-
ported in tension between the two adjacent 
cells. This is accomplished by zeroing the ap-
propriate two values in the vertex-edge bound-
ary operator defining the displacement gradi-
ent. By extension, this also zeroes the stress on 
the face and eliminates the contribution of the 
face to the balance of momentum. 

The stress-strain curve for pure mortar is 
shown in Figure 10 and a sample fracture sur-
face is shown in Figure 11. As expected, the 
tensile strength of the concrete block is much 
lower in tension than it was in compression. In 
this setup of the simulation, the maximum ten-
sile stress occurs near the loading surfaces. 
However, the fractures were only allowed to oc-
cur within the block and not at the exterior 
boundaries. As expected, after a few faces fail, 
a growing fracture surface develops – in this 
case near the upper surface. The fracture 
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surface is approximately horizontal, failing 
along existing interfaces in the Voronoi tessel-
lation.  

 

Figure 10: Stress-strain curve of mortar block in ten-
sion. 

 

Figure 11: Fracture surface at failure of concrete block 
in tension. 

4 CONCLUSIONS 
This article presented an extended formula-

tion of mechanical behavior using discrete ex-
terior calculus (DEC) to study incremental elas-
tic-plastic materials with isotropic strain hard-
ening.  

The extended formulation uses a Voronoi 
tessellation of the domain as the primal mesh 
and the Delaunay tetrahedralization as the dual. 
In contrast to previous work, the Voronoi tes-
sellation is computed first, rather than a byprod-
uct of a tetrahedralization, which enables more 
useful tessellations. This, however, necessitated 
a new boundary closure to account for truncated 
Delaunay edges at the boundary of the geome-
try. The new boundary closure places additional 
points at the center of Voronoi faces where the 
Delaunay edges truncate. These are accounted 
for in the formulation by modifying the bound-
ary operator (discrete exterior derivatives) and 

discrete flat musical isomorphism. The new 
closure is in many ways simpler, both in theory 
and implementation, compared to the previous 
approach.  

Validation of the new method was presented 
as a series of increasingly complex simulations, 
with results compared to Abaqus (finite ele-
ments). The first simulation was of mortar only, 
with uniform properties. The plastic response of 
a cubical specimen under compression was sim-
ulated, with very good agreement with Abaqus 
in terms of both local and global stress re-
sponse.  

Aggregates were then added to the mortar 
matrix, creating a mixture of materials with dif-
ferent properties and material models (aggre-
gates were simulated as elastic only). The ex-
pected increase in global material strength was 
observed, as well as the local discrete response 
afforded by DEC. 

Finally, a simulation of a concrete block in 
tension was presented to demonstrate the ability 
of the approach to simulate fracture. While this 
is a simple, and somewhat contrived simulation, 
it highlights the potential of the approach to be 
extended further and applied to more complex 
fracture mechanics of concrete structures in the 
future. 
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