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Abstract. Fatigue crack growth is a critical issue in the field of structural engineering, including
concrete structures. Concrete is a heterogeneous quasi-brittle material and its behaviour is affected
by various factors such as loading conditions, material properties, and environmental factors. Fatigue
crack propagation in concrete is regarded as a random phenomenon because it depends on various
factors that behave in a variable or unpredictable manner. These factors include the characteristics
of the concrete, such as its stiffness and strength, dimensions, morphology, crack path, and loading
conditions. It is essential to accurately model and predict the uncertain process of fatigue crack
growth for designing and maintaining structures such as bridges, nuclear power plants, and offshore
structures. In order to address this issue, the fatigue crack growth in concrete is modeled using
Markov Chain simulation. The transition number of cycles from stable to unstable crack growth
region is estimated by optimizing parameters of Paris’ and Forman’s laws. Also, the crack length
prediction model is developed based on the principle of Markov chains.

1 INTRODUCTION

The fatigue crack propagation typically is
represented as the rate of crack growth with the
number of cycles versus the stress intensity fac-
tor range in which three different stages are de-
marcated as shown in Fig. 1. The first stage
(regime A) is the short crack growth regime
where the crack growth rate is dependent on
the material microstructure. The second stage
(regime B) is the stable crack growth regime
where the Paris’ law is applicable. The third
and final stage (regime C) is characterised by
a rapid increase in crack growth rate leading to
fracture.

A Markov chain or Markov process is a

probabilistic framework that characterizes a se-
ries of potential occurrences. In this framework,
the likelihood of each event occurring is influ-
enced solely by the state reached in the preced-
ing event. In simpler terms, one can conceive of
it as ”The forthcoming outcome is solely deter-
mined by the present circumstances.” [1].

Markov processes are often employed to an-
alyze fatigue crack propagation in metals [2–4].
The study of fatigue crack growth in concrete
using Markov processes has been relatively lim-
ited, despite the significant similarity between
fatigue crack growth and Markov’s chain. Con-
crete exhibits a more random cracking pat-
tern compared to metals due to its heteroge-
neous microstructure. The presence of aggre-
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gate boundaries in concrete leads to the coales-
cence of initial cracks. Additionally, the frac-
ture process zone ahead of the crack tip in con-
crete is not fully understood, unlike the plastic
zone in metals [5]. Paris’ and Forman’s laws,
commonly used for fatigue crack growth in met-
als, do not accurately apply to concrete. There-
fore, size-adjusted versions of these laws are
typically used for concrete [7].

Figure 1: Typical plot of crack growth rate with respect to
the stress intensity range where the Paris–Erdogan equa-
tion fits the central, linear region of Regime B.

This work aims to stochastically assess the
transition time, which represents the shift from
stable to unstable crack growth, and predict the
fatigue crack length in concrete based on the
number of cycles using the Markov chain sim-
ulation. The proposed model takes into account
crack growth regimes B and C and their tran-
sition allowing for a more accurate representa-
tion of the complex nature of the fatigue crack
growth process. A regime-switching model is
used to express the transition number of cy-
cles between regions B and C. Also, the fatigue
crack path is predicted using Paris’ law. The

proposed model is demonstrated using experi-
mental data from available literature on crack
growth rate with stress intensity factor range
for three-point bend experimental tests of plain
concrete beams to develop a prior distribu-
tion of the crack growth parameters. The pro-
posed model has several advantages over tra-
ditional deterministic models for fatigue crack
growth in concrete as it is based on a rig-
orous mathematical framework that can accu-
rately represent the stochastic nature of the fa-
tigue crack growth process and it accounts for
different crack growth regimes and their transi-
tions, which allows for a more accurate repre-
sentation of the complex nature of the fatigue
crack growth process. The model can also aid
in developing more robust models for concrete
fatigue analysis.

2 METHODOLOGY
2.1 Mathematical framework

Paris’ law [6] and Forman’s law [8] are both
mathematical equations related to material fa-
tigue and the behavior of materials under cyclic
loading, but they focus on different aspects and
have distinct applications.

Paris’ law, also known as the Paris-Erdogan
equation is a mathematical relationship that de-
scribes the growth rate of fatigue cracks in ma-
terials. It specifically focuses on the propaga-
tion of small cracks within a material subjected
to cyclic loading. The law provides a way to
predict how fast a crack will grow in a ma-
terial over time, considering factors like stress
intensity, crack size, and the material’s proper-
ties [9]. The Paris’ law is given by:

da

dN
= C1(∆K)m1 (1)

where,∆K = (∆σ) · Y
( a

D

)
·
√
πa

∆σ is the applied stress range in the fatigue
tests, Y (a/D) is the geometric factor which de-
pends on the ratio a

D
, where a is the crack length

and D is the depth of the specimen. C1 and m1

are the Paris’ law parameters. N is the number
of cycles of fatigue loading.
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In essence, Paris’ law is used to estimate
the rate at which a fatigue crack will advance
in a material, which is essential for assessing
the remaining useful life of structures and com-
ponents subjected to cyclic loading, such as
aircraft wings, pressure vessels, and pipelines
[10].

Forman’s law emphasizes the concept that
the strength or resistance of a material decreases
as it experiences a higher number of stress cy-
cles. It focuses on the overall degradation of
material properties due to repeated loading and
unloading. Forman’s law is particularly relevant
when dealing with materials subjected to low-
cycle fatigue, where the stress levels are rela-
tively high [11, 12]. Forman’s law is given by:

da

dN
=

C2(∆K)m2

(1−R)Kc −∆K
(2)

where R is the ratio of the minimum to max-
imum stress during fatigue loading. C2 and m2

are the Forman’s law parameters. KC is the
size-dependent equivalent fracture toughness.

Paris’ law is concerned with the growth rate
of fatigue cracks in materials, while Forman law
deals with the reduction in material strength due
to repeated loading cycles. Both laws provide
valuable insights into the behavior of materi-
als under cyclic loading conditions, but they ad-
dress different aspects of material fatigue and
have distinct applications in engineering and
materials science. Paris’ law corresponds to
the stable crack growth region, and Forman’s
law corresponds to the region of unstable rapid
crack growth [13].

The Paris’ and Forman’s laws are not directly
applicable to concrete [7]. Rather, their size ad-
justed versions are relatively better applicable
as in Eq. 3 and Eq. 4, respectively.

da

dN
= C1

(
∆K

Kc

)m1

(3)

da

dN
=

C2

(
∆K
Kc

)m2

(1−R)Kc − ∆K
Kc

(4)

where KC is the size-dependent equivalent frac-
ture toughness which is related to the constant

fracture toughness, Kf , by [7].

Kc = Kf

(
β

1 + β

) 1
2

where β is the brittleness number defined as
d
d0

, where d is the structural size and d0 is the
transitional size.

To determine the number of cycles corre-
sponding to the transition from regime B to
C, a hypothesis is considered: The relation-
ship between the logarithm of crack growth rate
log( da

dN
) and the logarithm of the stress inten-

sity factor range log(∆K
Kc

) shows a linear pat-
tern during stable crack growth. However, in
the unstable crack growth region, this relation-
ship transforms into a shape resembling an ex-
ponential curve. This hypothesis is shown as
transition theory in Fig 2. The crack growth rate
curve is a combination of the size-adjusted Paris
region, which follows a linear pattern, and the
size-adjusted Forman region, which exhibits a
non-linear behavior. The point where these two
regions intersect corresponds to the cycle count
at which the crack propagation shifts from a sta-
ble regime to an unstable one.

Figure 2: Proposed transition theory which is a com-
bination of size-adjusted Paris region (Linear) and size-
adjusted Forman region (Non-Linear). Their intersection
corresponds to the transition number of cycles (T), i.e.,
the number of cycles at which the crack propagation goes
from stable to unstable region

Based on this transition theory, it is sug-
gested that the point where the curve transitions
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from the linear pattern of Paris’ law (represent-
ing stable growth) to the exponential pattern
of Forman’s law (representing unstable growth)
indicates the shift from stable to unstable crack
growth. The parameters of the Paris’ law (m1,
C1) and Forman’s law (m2, C2) influence the
gradients and intercepts of these equations, re-
spectively.

In the second part of this work, an algo-
rithm is developed to predict the path of crack
propagation based on Markov’s process, utiliz-
ing these optimized parameters. This algorithm
aims to predict the path of crack propagation.
For the sake of simplicity, the mathematical
modeling of the second part is restricted to the
use of Paris’ law only.

The specific details of both algorithms are
explained in the following subsections. These
algorithms aim to fine-tune the Paris’ and For-
man’s laws parameters for accurate predictions
and then use Paris’s law parameters to simulate
the crack with number of cylces of loading.

2.2 Algorithms
Algorithm 1: Estimating number of cycles at
transition by optimising Paris’ and Forman’s
parameters

• Get the the experimental value of crack length
aNexp vs number of cycles N .

• Define an objective function f given below in
Eq. 5 that calculates the sum of square of dif-
ferences between the predicted crack length
using Paris’ and Forman’s equations (with pa-
rameters m1, C1, T , m2, C2) and the actual
experimental crack length aNexp.

f = f1 + f2 (5)

where, f1 =
T∑

N=0

(
aN(m1, C1, N)− aNexp

)2

and, f2 =

Nf∑
i=T

(
aN(m2, C2, N)− aNexp

)2

where, aN(m1, C1, N) corresponds to theo-
retical crack length calculated as per size ad-
justed Paris’ law at N number of cycles. Sim-
ilarly, aN(m2, C2, N) corresponds to the the-
oretical crack length as per size adjusted For-
man’s law. Nf denotes the number of cycles
at which the specimen fails

• Minimize the objective function f to find
the best-fit values for the parameters m1*,
C1*, T*, m2*, and C2*, which optimize
the agreement between predicted and actual
crack growth rates.

Algorithm 2: Predicting Crack Length Using
Optimized Parameters

• Get ’n’ experimental points for crack length a
versus the number of cycles N . ’n’ depends
on number of experimental data points avail-
able for a particular specimen.

• Use the optimized values of m1 and C1 to
generate 10 sets of random parameters (m1,
C1) using the mean and standard deviation
through Monte Carlo simulation.

• Starting from the first experimental point,
generate 10 crack length versus cycles curves
using the Paris’ law and the parameter sets
generated in the above step.

• Calculate a distance optimization function
(fd)

fd =

Nf∑
N=0

10∑
i=1

(
(ai(mi, Ci, N)− ai,exp(N))2

)
(6)

for each of the 10 curves compared to the ex-
perimental curve, and select the four curves
that are closest.

• Randomly pick one of the four nearest curves
and move to the next experimental point (N2).

• Repeat the above step by generating 10 curves
for each point, selecting the one with the least
distance, and moving to the subsequent ex-
perimental points (N3, N4, and so on). Each

4



Sumit Singh Thakur and Pervaiz Fathima K.M.

Figure 3: Schematic illustration of steps involved in Algorithm-2. Each step serves as Markov’s chain

Table 1: Details of the beam specimens considered for the study (all lengths are in mm and all load are in kN)

Specimen Thickness Depth Length span Initial Notch Peak Load Nf

Shah and Kishen [14] (Small) 50 76 241 190 15.2 4.46 11642
Shah and Kishen [14] (Medium) 50 152 431 380 30.4 6.78 11128

Shah and Kishen [14] (Large) 50 306 810 760 60.8 11.70 12530
Bazant and Xu [7] (Small) 38.1 38.1 101.6 95.25 6.35 4.08 939

Bazant and Xu [7] (Medium) 38.1 76.2 203.2 190.5 12.7 6.71 1286
Bazant and Xu [7] (Large) 38.1 152.4 406.4 381 25.4 11.65 1083

step serves as Markov’s chain. These steps
are shown schematically in Fig. 3.

• Repeat this process for all experimental
points, generating a series of curves that pre-
dict the crack growth path based on the opti-
mized parameters.

The theoretical N value as a function of crack
length a is obtained by numerical integration
as given in Eq. 7 using the limit of sum
method.

N(a) = (a− a0) lim
n→∞

1

n

a0+(i−1)h∑
a=ao

f(a) (7)

where, f(a) =
1

C1 ·
(

∆σ
Kc

· Y
(

a
D

)
·
√
πa

)m1

Then, the inverse function of N , denoted as
g−1(N), is generated to obtain the predicted
crack length a as a function of N , i.e. a(N) =
g−1(N).

This mathematical operation is performed us-
ing MATLAB R2022b.
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Table 2: Optimised Paris’ and Forman’s law parameters with transition number of cycles

Specimen m1exp logC1exp m1* logC1* m2* logC2* T* m1 error
Shah and Kishen [14] (Small) 6 -9.7 5.73 -7.25 6.14 -8.46 8353 4.50%

Shah and Kishen [14] (Medium) 4.5 -8.3 4.91 -6.07 4.21 -7.58 8376 9.11%
Shah and Kishen [14] (Large) 4.8 -9.0 4.16 -6.27 4.69 -7.98 9464 13.35%

Bazant and Xu [7] (Samll) 10.6 -18.3 10.32 -18.94 11.26 -20.36 689 2.64%
Bazant and Xu [7] (Medium) 10.6 -18.4 9.80 -19.56 10.75 -20.78 921 7.54%

Bazant and Xu [7] (Large) 10.6 -18.4 12.51 -23.40 13.24 -24.22 845 11.13%

3 APPLICATION OF THE PROPOSED
METHODOLOGY

The two algorithms described in Section 2.2
needed to be executed by crack growth data. For
this, data of the 3-point bend test is taken from
two sources, Shah and Kishen [14]; and Bazant
and Xu [7]. The experimental data was avail-
able for three sizes of beam specimens from
both the sources, viz. small, medium, and large.
The sizes of specimens and the loading condi-
tions of fatigue tests are presented in Table 1.
The geometric shape function for the given 3-
point beams with span to depth ratio 2.5 is given
by:
Y
(

a
D

)
=

(
1− a

D

)− 3
2 ·
(
1− 2.5 · a

D
+ 4.49 ·

(
a
D

)2
−3.98 ·

(
a
D

)3
+ 1.33 ·

(
a
D

)4
.

The data from both sources was incorporated
into the algorithm to optimize the values of the
Paris and Forman’s law parameters, thus gener-
ating the transition number of cycles.

For Algorithm-1, the input parameters in-
cluded the dimensions of the beam, initial notch
length, loading parameters, geometric factor,
and the brittleness number β. The values of
β were considered as 0.052, 0.104, and 0.209
for small, medium, and large specimens in the
respective order [7]. The input parameters for
each specimen were taken from Table 1.

Algorithm-1, aimed at determining the tran-
sition number of cycles, was executed using a
non linear least-squares solver (lsqnonlin) from
the R2022b version of MATLAB software.

After finding the optimized values of the pa-
rameters by executing Algorithm-1, optimized
Paris’ law parameters were incorporated to exe-

cute Algorithm-2 and predict the crack length
against the experimental crack length for the
respective specimens of the study. The input
parameters for crack length prediction included
the optimized parameters of Paris’ law and the
geometric factor. Ten sets of values for m1 and
C1 were generated using Monte Carlo simula-
tion, with the optimized values as the mean and
a 10% standard deviation following a normal
distribution. This randomization was performed
to align with the problem-solving heuristic of
following a greedy algorithm, which entails
making locally optimal choices at each stage of
the Markov chain [15].

4 RESULTS AND DISCUSSIONS

The proposed methodology was imple-
mented as described in Section 3. For the first
part of the work, the optimized parameters m1*,
logC1*, m2*, and logC2*, along with the tran-
sition number of cycles (T ∗), are reported in
Table 2 along with the experimental values of
m1exp and logC1exp for all the specimens under
consideration. The errors in the m1 values are
found to be 4.50%, 9.11%, and 13.35% fo data
from Shah and Kishen [14] for small, medium,
and large-sized specimens, respectively. The
corresponding errors for data from Bazant and
Xu [7] were found to be 2.64%, 7.54%, and
11.13%. It is important to note that the param-
eters of Forman’s law were not reported in ei-
ther of the experimental studies. It is observed
that the transition model predicts well for small-
sized specimens compared to large-sized speci-
mens.
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Figure 4: Predicted crack length against experimental
data set for three sets of specimens conducted by Shah
and Kishen [14].

For the second part of the work, the pre-
dicted crack lengths for all respective experi-
mental data sets are depicted in Fig. 4 (for
Shah and Kishen [14]) and Fig.5 (for Bazant
and Xu [7]). Fig. 4 includes 11, 13, and 18 data
points for small, medium, and large-sized spec-
imens, respectively. In contrast, Fig. 5 involved
13, 13, and 12 data points for small, medium,
and large-sized specimens, respectively.

In the case of Shah and Kishen [14], the co-
efficient of determination (COD) for predicted
crack length was noted as 0.9956, 0.9851, and
0.9120 for small, medium, and large-sized spec-
imens, respectively. Likewise, for Bazant and
Xu [7], the coefficient of determination for pre-
dicted crack length was 0.9970, 0.9812, and
0.9721 for small, medium, and large-sized spec-
imens, respectively.

Figure 5: Predicted crack length against experimental
data set for three sets of specimens conducted by Bazant
and Xu [7] [7].

It is evident that the proposed model demon-
strates better accuracy in predicting crack paths
for smaller-sized specimens compared to larger-
sized ones. Additionally, the model’s accu-
racy is more pronounced at lower cycle num-
bers, whereas its predictive capability dimin-
ishes at higher cycle numbers. This discrepancy
might have aroused from the omission of For-
man’s law in the crack prediction model, which
is more relevant for higher cycle numbers.

5 CONCLUSIONS

In the first part of this work, the number of
cycles corresponding to the shift from the sta-
ble crack growth region to the unstable crack
growth region (transition number of cycles) is
evaluated using the proposed transition theory,
which involves size-adjusted Paris’ and For-
man’s laws for concrete. The experimental data
was obtained from two separate sources in the
literature, and it demonstrates good agreement
with the optimized parameters.

Predicting crack length for fatigue in con-
crete using Markov chain simulation holds sev-
eral significant advantages and benefits in the
field of concrete. The significance of predict-
ing crack length for fatigue in concrete using
Markov chain simulation lies in its ability to
provide accurate, probabilistic, and long-term
predictions that enable better decision-making
for the design, maintenance, and safety of con-
crete structures. In the second part of the
work, crack length is predicted for the same
two experimental data sets using the principle
of Markov chain simulation. The respective
predicted crack lengths were obtained and plot-
ted against the experimental values with good
coefficients of determination. The findings in-
dicate that the predictions are more accurate
for smaller-sized specimens when compared to
larger ones. Additionally, the accuracy of pre-
dictions was higher for a lower number of fa-
tigue cycles compared to a higher number of fa-
tigue cycles.
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