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Abstract: Concrete serves as a prevalent construction material in various infrastructure elements, 

including bridge decks, airfield and highway pavements, offshore structures, and machinery 

foundations. Many of these structures undergo fatigue loading, which is a process of gradually 

introducing permanent internal changes to the material, resulting in the reduction of remaining life 

of the structure. Despite its inherent heterogeneity, concrete is often treated as homogeneous, 

disregarding the influence of its variations. These disparities significantly influence the life concrete 

subjected to fatigue loading. Hence, it's prudent to adopt a probabilistic approach that 

accommodates these divergent effects when estimating the fatigue life of cementitious materials. 

Artificial Neural Networks (ANNs) have emerged as a promising computational tool for addressing 

this challenge. ANNs embrace a probabilistic framework to model the intricate relationships within 

cementitious composites. In this study, an ANN tool has been employed to predict the fatigue life of 

both plain concrete and reinforced concrete beams across varying sizes: small, medium, and large. 

The model is trained using experimental data corresponding to small and medium specimens and 

then validated using data from large specimens. By incorporating material and fracture mechanics 

properties associated with concrete's softening behavior as input, this model can forecast fatigue life 

in terms of crack length. Notably, this approach offers distinct advantages over alternative methods 

as it takes into account the stochastic nature of concrete characteristics under fatigue loading, 

consequently providing a reasonably accurate prediction of concrete's fatigue life. 
 

 

1 INTRODUCTION 

Despite the heterogeneous nature, concrete is 

one of the most commonly used construction 

material. Upon loading concrete structures, the 

innate imperfections due to its heterogeneities 

will develop into cracks. This cracking process 

adversely affects the life of concrete 

structures. The crack propagation occurs more 

rapidly when these structures are subjected to 

fatigue loading. 

Fatigue is the process of gradual and 

permanent internal changes occurring within a 

material due to repetitive or cyclic loading [1]. 

This process triggers the development of 

cracks from existing flaws within the material, 

ultimately resulting in failure. Structures when 

subjected to fatigue loading can fail even 

before reaching its yield strength. As a result, 

evaluating the fatigue life of structures 

becomes crucial. Numerous structures, such as 
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offshore support systems, bridge decks, 

machinery foundations, highways, and airfield 

pavements, are subject to repetitive loading. 

The intricate interaction of these 

heterogeneous constituents of concrete adds 

complexity to the analysis of fatigue failure in 

reinforced concrete. Predicting the fatigue life 

of reinforced concrete can be approached 

deterministically or probabilistically. The 

deterministic approach includes various 

methods like fatigue life models, fracture 

mechanics models, and fatigue damage 

models. However, relying solely on the fatigue 

life method to assess concrete's fatigue life is 

flawed due to its distinctive characteristics. 

This method is better suited for materials with 

both brittle and ductile properties [2]. On the 

other hand, fracture mechanics models offer 

relatively accurate predictions for the lifespan 

of metals. When compared to fatigue life 

models, fracture mechanics provides a better 

understanding on the fatigue behavior of 

concrete. However, utilizing the fracture 

mechanics approach to predict concrete 

behavior becomes more intricate due to the 

heterogeneous nature of concrete [3].Upon 

loading structures, the inherent micro cracks in 

the material merge to form larger cracks, 

eventually culminating in failure [2]. The 

deterministic models fall short of precision due 

to the uncertainties stemming from these 

inherent complexities. 

Given the limitations of the fatigue models 

discussed above, the probabilistic method 

emerges as a suitable choice for predicting the 

fatigue life of reinforced concrete. The 

probabilistic approach considers a distributed 

value for a parameter rather than fixed ones, 

thereby encompassing fluctuations and 

uncertainties within the model. The prevalent 

probabilistic strategies are the Weibull 

distribution, Bayes' rule, and the application of 

Artificial Neural Networks (ANN). An 

Artificial Neural Network is a computational 

tool inspired by the structure of biological 

nervous systems. ANN can be utilized in 

predicting the fatigue life by analysing the 

input and output data [5]. 

2 ARTIFICIAL NEURAL NETWORK 

As an element of artificial intelligence, the 

Artificial Neural Network (ANN) is created, 

comprising multiple interconnected artificial 

neurons. Each neuron functions as a nonlinear 

unit that takes in input signals and produces an 

output. The ANN consists of three layers of 

neurons: the Input layer, the Hidden layer, and 

the Output layer [6]. The Input layer acquires 

information, the Hidden layer processes and 

assesses information from the Input layer, and 

finally, the Output layer gives the output. The 

architecture of an ANN is categorized into two 

types: the Single-layer Neural Network and the 

Multilayer Neural Network. In Single-layer 

Neural Network, each neuron in the single 

layer processes the input independently and 

produces a corresponding output without any 

intermediate processing steps. A Multilayer 

Neural Network, in contrast to a single-layer 

neural network, is a more sophisticated 

artificial neural network architecture designed 

to handle complex and nonlinear relationships 

within data. This network type consists of 

multiple layers of interconnected neurons, 

which enable it to perform intricate feature 

extraction and transformation tasks. The 

selection of the type of layer depends on the 

type of problem that has to be addressed [7]. 

2.1 Neural Network Model development 

This study focuses in developing the fatigue 

life of reinforced concrete in terms of relative 

crack depth. The model is developed by 

making use of experimental data gleaned from 

existing literature. The accuracy of the model 

depends on the number of data set used. The 

more the data set, the more accurate the results 

will be. Out of the total data set in Artificial 

Neural Network (ANN), 70% of the data is 

used for training, while 15% is used for testing 

and remaining 15% for validation [8]. This 

study considers a multilayer neural network, 

ie, input layer, hidden layer and output layer.  

Input features encompass fracture mechanics 

properties and material properties that account 
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for softening behaviour of concrete. 

The development and training of the model 

are carried out using the Neural Network 

Toolbox within MATLAB 2018a. The ANN 

model is developed by testing, training and 

validating the experimental and analytical data 

reported by Sonalisa and Kishen [9]. The ANN 

architecture employed a multilayer perceptron 

network (MLPN), also known as a multilayer 

feed-forward backpropagation network. To 

train the model, the Levenberg-Marquardt 

backpropagation algorithm was adopted due to 

its capacity to yield accurate results in a 

shorter timeframe and its reliability in 

addressing complex modelling challenges. 

The neural network was created using 

datasets taken from the experiments conducted 

on reinforced concrete beams subjected to 

four-point bending. The specific geometric 

properties and material parameters of the 

chosen specimens can be found in Table 2.1. 

The fracture-related parameters, including 

fracture toughness and tensile strength, utilized 

in this study are detailed in the same table. 

 

Table 2.1 Material and Geometric properties 

of specimen used 

 

Sl no Input Parameter Input 

Range 

1 Span S (mm)  1200 

2 Depth D (mm) 250 

3 Thickness B (mm) 150 

4 Notch size a (mm) 30 

5 Fracture Toughness  

(N/mm) 

0.3 

6 Elastic Modulus E (MPa) 16500 

7 Tensile Stress  (MPa) 2.86 

 

The selection of input parameters depends 

on both material properties and fracture 

mechanics properties that attributes towards 

the propagation of crack in concrete. The 

chosen input parameters, along with their 

corresponding explanations, are outlined in 

Table 2.2. 

Table 2.2 Description details of Input 

Parameter 

 

No Input Parameter Description 

 1 Number of 

Cycles to failure 

Number of cycles 

required for crack 

development 

 2 Structural Size Depth of the 

beam 

3 Area of steel Area of steel 

reinforcement in 

beam 

4 Tensile stress When tensile 

stress exceeds this 

value crack occur 

5 Modulus of 

elasticity of 

concrete 

 

Ratio of applied 

stress to 

corresponding 

strain 

6 Energy release 

rate 

Energy required 

by crack to 

propagate 

 

In this study, the output data selected is the 

relative crack depth. The dataset was 

partitioned randomly, with 70% designated for 

training, 15% for validation, and the remaining 

15% for testing purposes. Table 2.3 outlines 

the network configuration employed in 

developing the ANN model. 

Table 2.3 Neural network configuration used 

for validation of Model 

 

Parameter Specification 

No: of neurons in 

input layer 

6 

No: of neurons in 

hidden layer 

2-10 

No: of neurons in 

Output layer 

1 

Training Function Levenberg-Marquardt 

(trainlm) 

Activation Function Tan-sigmoid 

Performance 

Function 

Mean squared error 

(MSE) 

Regression value 

 

The neural network model was developed 
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using 100 dataset with 1000 iterations. To 

determine the optimal number of hidden 

neurons that yield the most effective 

performance of ANN model, evaluation 

criteria like Mean Squared Error (MSE) and 

regression value (R) were adopted. The neural 

network architecture that demonstrated the 

lowest MSE value and an R value approaching 

1 was chosen as the most suitable. In this 

study, the neural network configuration 

featuring 7 neurons within the hidden layer as 

considered as the optimal neural network 

architecture, as it gave an MSE value of 

approximately 0.0000003 and an R value of 

0.999. Thus, this optimal configuration 

corresponds to 6 input neurons, 7 hidden 

neurons, and 1 output neuron (6-7-1 

architecture) as depicted in Figure 2.1 and 

Figure 2.2. 

 

 

Fig 2.1: N 6-7-1 Neural Network architecture 

used in MATLAB R2018a 

 

Fig 2.2: Neural Network Architecture Model 

2.2 Evaluation of Neural Network Model 

The performance of the neural network 

architecture can be assessed based on the 

Regression value (R).  

 

 
 

 
 

Fig 2.3: Regression plots for training, 

validation, testing, and overall data  
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 A model with an R value approaching 

1 signifies the accuracy of the model. 

Furthermore, determining the optimal number 

of neurons within the hidden layer plays a 

crucial role in achieving the best network 

configuration. Consequently, an optimal neural 

network structure can be achieved by 

considering the R value. The ANN model, 

possessing a reliability (R) value of 0.999, is 

adopted to predict the relative crack length of a 

reinforced concrete beam, as depicted in 

Figure 2.3. This underscores the accuracy of 

predictions using the ANN architecture. The 

output predicted using the ANN architecture in 

terms of relative crack length is plotted against 

the number of cycles and compared with 

experimental results taken from literature and 

is shown in Figure 2.4. 

 

 
 

Fig 2.4: Comparison of predicted output 

with experimental results [8] 

 
The experimental results and the predicted 

results exhibit a good agreement. The validation 

result shows a minimal error percentage, thus 

affirming the capability of the developed model to 

accurately predict the fatigue life of reinforced 

concrete beams. 

3 CONCLUSIONS 

In this study, ANN architecture is used to 

predict the fatigue life of reinforced concrete 

with reasonable accuracy. The accuracy can be 

further improved by considering other relevant 

parameters. 

This study focuses on developing a model 

to predict the fatigue life of reinforced 

concrete using Artificial Neural Networks 

(ANN). ANN is a computational tool inspired 

by biological nervous systems. A novel model 

based on ANN is developed to predict the 

fatigue life of reinforced concrete, aimed at 

addressing the intricacies and time demands 

associated with alternative fatigue life 

prediction methods. A multilayer model was 

adopted to develop the ANN model to predict 

the fatigue life of reinforced concrete. Out of 

100 dataset taken from the data reported by 

Sonalisa and Kishen [8], 70% of data was used 

to train the model, 15% to test the model and 

remaining 15% to validate the model. Training 

was done by considering 2-10 neurons in the 

hidden layer. The ANN architecture with 7 

neurons in the hidden layer showed a low 

Mean Squared Error (MSE) of approximately 

0.0000003 and 0.999 as the Regression (R) 

value. Thus, the optimum architecture was 

obtained while using 6 input neurons, 7 hidden 

layer neurons, and 1 output neuron. The 

relative crack depth thus obtained is plotted 

against the number of cycles and compared 

with the experimental data. The relative crack 

depth thus predicted using the suggested ANN 

architectures matches well with the 

experimental results.  

Employing this ANN architecture offers a 

reasonable level of accuracy in predicting the 

fatigue life of reinforced concrete. This model 

can be further refined by considering 

additional pertinent parameters influencing the 

fatigue of reinforced concrete.  
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