
11th International Conference on Fracture Mechanics of Concrete and Concrete Structures
FraMCoS-11

J. M. Chandra Kishen, A. Ramaswamy, S. Ray and R. Vidyasagar (Eds)

A COMPARATIVE STUDY OF IMPLICIT AND EXPLICIT SOLUTION
PROCEDURES FOR COMPUTATIONAL MODELING OF REINFORCED

CONCRETE STRUCTURES

NIELS W. KOSTENSE∗, YUGUANG YANG∗, MAX A.N. HENDRIKS∗†

AND JAN G. ROTS∗

∗Delft University of Technology
Delft, The Netherlands

e-mail: n.w.kostense@tudelft.nl

†Norwegian University of Science and Technology
Trondheim, Norway

Key words: Reinforced concrete; Numerical analysis; Solution procedures; Shear failure, Com-
putational modeling strategies

Abstract. This paper presents a systematic comparison between implicit and explicit solution
procedures for simulating the fracture processes in reinforced concrete. Implicit procedures
are known to suffer from convergence problems due to negative softening stiffness, bifurcations
and snap-backs. Explicit techniques have the potential to overcome those, but examples are
rather scarce. In this study a popular total-strain based constitutive crack-crush model has been
implemented in an explicit framework and consistent comparisons are made between the explicit
and implicit solution procedures. Using identical finite element discretization and the same
constitutive model, a range of benchmarks tests has been analyzed, including single element
tests, a notched beam, a shear panel, and a shear critical RC beam. The results indicate that
the explicit procedure could serve as a viable and robust alternative to the implicit approach,
particularly in scenarios with highly brittle failure modes. As a side topic, it was found that
the rotating format of the smeared crack model may produce over-rotation of cracks towards
the direction of the rebars, rather than keeping them orthogonal to the rebars, as compared to
a fixed crack format, for both the explicit and implicit approach.

1 INTRODUCTION

Non-Linear Finite Element Analysis
(NLFEA) is becoming an increasingly pop-
ular modeling approach for the safety as-
sessment of reinforced and prestressed con-
crete structures. However, their softening
behavior and brittle failure modes pose sig-
nificant challenges from a computational
point of view. In many cases, the crack
and crush propagations under progressive
loading can exhibit bifurcation points, snap

backs, and snap-throughs, which may lead
to unstable and even inaccurate numeri-
cal results. To this end, conventional im-
plicit incremental-iterative solution proce-
dures such as Newton-Raphson have been
enriched by various improvements such as
arc-length methods and indirect displace-
ment control methods. Nevertheless, when
analyzing real-scale RC structures with mul-
tiple fracture localizations, convergence of
the incremental-iterative procedures cannot
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always be achieved, especially beyond local
peaks or global peaks in the load displace-
ment response.

In an effort to circumvent these stability
issues, the sequentially linear solution proce-
dure [1] has been proposed and successfully
employed at structural level by e.g. Slobbe
et al. [2]. An alternative is to use an ex-
plicit solver, which is a time-based approach
that simulates the unstable fracture process
dynamically rather than trying to capture
it statically with path-following techniques.
Although implicit incremental-iterative tech-
niques are still common practice amongst
structural engineers, it is worth evaluating
the performance of an explicit solver. How-
ever, consistent comparative studies between
implicit and explicit solution procedures have
so far been carried out only to a limited ex-
tent, e.g. [3]. This is mainly due to the fact
that explicit analyses come with increased
computational costs and the available con-
stitutive models are often geared towards
high-dynamic events involving high strain
rates. Consequently, static features such as
the reduction in compression capacity due
to lateral cracking have received less atten-
tion in these explicit models. In this study,
a fully featured total-strain based smeared
crack/crush model, available in an implicit
FEM framework, has been re-formulated and
implemented in an explicit FEM framework.
Subsequently, a set of benchmarks is ana-
lyzed using both the explicit and implicit
solution technique while adopting the same
constitutive model and finite element dis-
cretization.

2 METHODOLGY
2.1 Finite element discretization

In this study, we limit ourselves to a 2D
plane stress configuration. The element size
is varied depending on the requirements of
the selected problem, ranging from 10 mm to
125 mm.All the analyses are performed with
a uniform mesh consisting of linear quadri-
lateral elements with full 2 x 2 Gauss inte-

gration. The reinforcement is modelled with
simple truss elements, letting the nodes of
the truss elements coincide with the nodes of
the quadrilateral elements, assuming perfect
bond.

2.2 Constitutive model
The model presumes that incipient crack-

ing occurs perpendicular to the direction
of maximum principal strain, as illustrated
fig. 1a, by the introduction of the crack or
n, t-coordinate system. The routine is com-
menced by computing the total strain vector
εxy in the global x, y-coordinate system, fol-
lowed by a transformation of the strains to
the n, t-coordinate system. In the implicit
solution procedure, this strain vector is up-
date each iteration and in the explicit solu-
tion procedure entering each timestep. After
the computation of the total strain vector,
the angle of the principal strain direction is
determined as

tan(2θε) =
γxy

εxx − εyy
(1)

and is subsequently used to transform the to-
tal strain vector to the crack n, t-coordinate
system according to the transformation ma-
trix Tε(θ),

εnt = Tε(θε)εxy (2)

In order to employ the uni-axial stress-strain
laws defined in the n, t-coordinate system,
the strain vector is multiplied by a projection
matrix P resulting in an equivalent uni-axial
strain vector defined as

ε̃nt = Pεnt (3)

where P is the projection matrix, which is
defined as:

P =
1

1− νntνtn

 1 νnt 0
νtn 1 0
0 0 1− νntνtn

 (4)

where νnt and νtn are reduced values of the
Poisson ratios in the n, t-coordinate system.
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Within the n, t-coordinate system, the con-
stitutive model is then formulated as a func-
tion of the equivalent strain vector ε̃nt as

σnt = σ(ε̃nt) (5)

Once the stresses in the n, t-coordinate sys-
tem have been computed, the stresses are
transformed back again to the global x, y-
coordinate system,

σxy = Tσ(θε)σnt (6)

where Tσ(θε) is the transformation matrix for
the stress vector and σnt is the stress vec-
tor in the crack n, t-coordinate system. Note
that the fixed and rotating formulations co-
exist within the same framework, where the
transformation matrix is kept constant in the
post-cracking stage within a fixed crack for-
mulation and is continuously updated main-
taining coaxiality between principal stress
and principal strain in the case of a rotat-
ing crack formulation.

Within the constitutive framework as de-
scribed above, the following features are de-
ployed:

• Tension softening is described by
a fracture energy based exponential
stress-strain relationship, based on
work of Hordijk et al. [4], and presented
in fig. 1b.

• The compression softening curve is
based on a parabolic relation as pro-
posed by Feenstra et al. [5] and is
shown in fig. 1c.

• The crack band width is estimated us-
ing the projection method proposed by
Govindjee et al. [6].

• In the fixed crack formulation, a dam-
age based shear retention factor is ap-
plied to account for the shear stresses
perpendicular to the crack plane [7].

• Reduction of the compressive strength
due to lateral cracking is applied ac-
cording to Vecchio et al. [8].

2.3 Solution procedures

Nonlinear static problems are tradition-
ally solved using an implicit solution pro-
cedure. Typically, an incremental-iterative
scheme like the Newton-Raphson method is
used to solve the nonlinear equilibrium equa-
tions. The accuracy is controlled by con-
vergence criteria expressed via displacement,
force and/or energy norms. Although this
method is proven to be effective in many
cases, stability issues may arise in the case of
different suddenly emerging sources of non-
linear behavior. In the implicit analysis
presented in this study, a regular Newton-
Raphson incremental iterative procedure is
adopted with convergence criteria based on
force or displacement tolerance of 1%.

Explicit solution procedures serves as an
alternative to the conventional implicit so-
lution method. However, it is typically not
the preferred choice due to several disadvan-
tages, including its higher computational de-
mand. The explicit approach employs the
central difference method, which is condi-
tionally stable and necessitates careful con-
sideration of critical time step size to ensure
numerical stability. To reduce analysis time,
strategies like time scaling or mass scaling
can be applied. A distinctive advantage of
the explicit approach is its ability to avoid
convergence issues and the requirement for
static equilibrium, simplifying the analysis
process. For efficiency reasons, it is partic-
ularly inclined towards utilizing reduced in-
tegration and a diagonal mass matrix. Ad-
ditionally, damping techniques, both global
and frequency-dependent, can be incorpo-
rated to enhance stability. This methodol-
ogy involves a quasi-static analysis approach
and is consequently loading rate dependent.
To verify the quasi-static equilibrium, inter-
nal and kinetic energy considerations as well
as force imbalances (external and reaction
forces) can be examined.

Some practical considerations have to be
taken into account regarding the utilization
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Figure 1: Total strain based smeared crack model

of the explicit solution procedure. The crit-
ical time step is directly related to the el-
ement size implying that a mesh refinement
has severe consequences on the analysis time,
hence an optimal element size has to be cho-
sen that is sufficiently small to capture the
relevant physical phenomena, but sufficiently
large to ensure a reasonable analysis time.
The critical time step size is defined as:

∆tcr = α
l

c
(7)

where α is a constant that adds additional
margin to the critical time step size and is
often taken as α = 0.9, l is the element size
and c is the wave speed. The wave speed
is calculated for 2D continuum and 1D ele-
ments as:

c2D =

√
E

(1− ν)ρ
, c1D =

√
E

ρ
(8)

Under the assumption that the analysis time
scales linearly with the number of elements
and the adopted time increment, a mesh re-
finement of a factor 2 will increase the anal-
ysis time by a factor 8 in a 2D model and
by a factor 16 in a 3D model. For concrete
modelled with an element size in the range
of l = 25 − 200mm, a Young’s modulus of
E = 30000− 38000MPa, a Poisson’s ratio of
ν = 0.15 and a density of ρ = 2400 kg/m3,
the critical time step can be expected to be
in the range of ∆tcr = 5 µs− 50 µs.

3 VALIDATION AT ELEMENT LEVEL
This single element test serves as a pre-

liminary analysis for the comparison of the
implicit and explicit solution procedures on
structural level. The primary objective is
to verify the equivalence of the constitutive
models under controlled loading conditions.
Besides this, additional insight is given into
the physical significance by employing a fixed
or rotating crack formulation, which goes
back to the early days of the smeared crack
approach [9] and is still a topic of debate [10].

A variety of single element tests is per-
formed, although we restricts ourselves to the
tension-shear problem, as it is most relevant
for the description of the combined cracking
and shearing behavior. The tension-shear
problem is inspired by [11], where the ma-
terial input parameters and dimensions are
modified to comply with elements used on a
structural level. The analysis is performed
on a four nodes quadrilateral plane stress el-
ement with a size of 100 x 100 mm2 and
a thickness of 100 mm. The adopted ma-
terial properties are presented in section 3.
The element is subjected to non-proportional
loading as visualized in fig. 2 considering two
loading stages:

• Loading Stage A: Uni-axiale tensile
strain load ∆εxx = εcr where the crack
is initiated perpendicular to the x-
direction. Lateral effects in the y-
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direction are suppressed by the addi-
tion of a strain load in y-direction of
∆εyy = −ν0εxx.

• Loading Stage B: A bi-axiale tensile
strain load combined with a shear
strain load with ratio of ∆εxx : ∆εyy :
∆γxy = 0.5 : 0.75 : 1

By the applied strain load, the inertia ef-
fects are eliminated, making the response in
terms of stress-strain relationship solely de-
pendent on the constitutive law. In fig. 3 the
crack patterns of the single element test are
presented at integration point level, where
fig. 5 and fig. 4 show the stress-strain rela-
tionship for the Rotating and Fixed crack
formulation respectively. It is observed that
the stress-strain diagrams are identical for
both solution procedures. Only a small de-
viation is observed in the softening branch
of the stress-strain diagrams, which is sub-
scribed to the difference in step size. The
damage based reduction of the Poisson ratio
is based upon the damage obtained from the
previous load or timestep. Reducing the step
size of the implicit solution procedure would
make the stress strain diagrams converge to
the same solution as for the explicit solution
procedure. As the crack in the fixed crack
formulation evolves, the orientation remains
fixed and eventually a second crack is initi-
ated in the y-direction. By letting the n, t-
coordinate system coincide with the global
coordinate system, the strain softening as
defines by the softening law is reflected by
the stress-strain diagrams fig. 5a and fig. 5b.
As damage propagates in the crack normal
direction, the damage-based shear retention
factor is scaled down with the same rate.
Consequently, the shear stiffness is reduced
to zero once the εyy reaches εu, defining the
end of the softening branch. The rotat-
ing crack formulation shows a substantially
different behavior where the crack rotates
and coincides with the pricipal strain direc-
tions. In addition, the crack bandwidth is
now dependent on the crack direction, which

also determines the shape of the softening
curve. Both features make the interpretation
of the stress-strain relationships not straight-
forward and ask for a detailed elaboration,
which goes beyond the intention of this pa-
per.
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x

y
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(a) Loading stage 1
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Figure 2: Tension-shear problem
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Figure 3: Tension-shear test: Crack strains
ϵcr

4 COMPARISON CASE STUDIES AT
STRUCTURAL LEVEL

After gaining confidence in the imple-
mented constitutive model, the model is ap-
plied to a series of case studies on a structural
level.
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Table 1: Overview of adopted concrete material properties in case-studies
Parameter Tension-shear Notched beam C2B1 Shear-panel Shear beam S1B1 Units

E0 30000 33500 30000 33551 N/mm2

ft 3.0 3.1 3.0 3.5 N/mm2

GI
f 100 160 100 76.5 N/mm

ν0 0.15 0.15 0.15 0.15 -
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Figure 4: Tension-shear test: Rotating crack orientation
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Figure 5: Tension-shear test: Fixed crack orientation

4.1 Notched beam
Firstly, a simple benchmark of a 3-point

bending test of an unreinforced notched
beam is considered, conducted by Sarkhosh
[12]. The specimen’s dimensions (l x b x
h) are 1000 x 125 x 125 mm3, featuring a
notch with a depth of 40 mm, fig. 6. The
material properties of the concrete are sum-
marized in section 3. With respect to the
applied loading, in the implicit solution pro-
cedure, a displacement controlled load is de-
fined with displacement increments of ∆u =
0.01mm. In similar fashion, for the ex-
plicit solution procedure, a constant velocity-
controlled load is applied, with a loading rate
of u̇y = 1.0mm/s. Notably, to minimize iner-

tia effects, the velocity is gradually increased
within a timeframe of ∆t = 0.1s. The fi-
nite element mesh is discretized with an av-
erage element size of 10 x 10 mm2. The load-
displacement response of the implicit and ex-
plicit solution procedure are shown in fig. 7,
both for the fixed and rotating crack ori-
entation. In accordance with the adopted
softening relation, an exponential softening
behavior is obtained for both the implicit
and explicit solution procedure. When com-
paring the load deflection curves of the im-
plicit and explicit solution procedure, it is
observed that the structural response of the
implicit solution procedure is slightly more
brittle than for the explicit solution proce-
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dure, but the difference is only marginal. For
this symmetric case with a vertical crack, we
do not observe a difference between the use
of a rotating or fixed crack concept, for both
the explicit and implicit procedure, as illus-
trated in fig. 7 for the load-displacement re-
sponse and fig. 8 for the crack pattern. The
conclusion is that this proportionally loaded
mode-I single fracture test can both be han-
dled well and stable by implicit and explicit
procedures.

Figure 6: Notched beam, taken from [12].
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Figure 7: Load-deflection of notched beam.
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Figure 8: Notched beam: Crack strains εcr

4.2 Shear panel under non-proportional
loading

Due to the authors specific interest in the
computational modelling of prestressed con-
crete beams, the next case study concerns a
nonproportional loading case, for a fictitious
shear panel. Here the same principle is fol-
lowed as for the tension shear problem from
section section 3; now the panel is initially
preloaded in compression and subsequently
in shear. The analysis mimics a more brittle
kind of failure mechanism, similar to diago-
nal tension failure in the web of a prestressed
concrete beam without shear reinforcement.
As no experiment is available, the case just
serves for mutual comparisons between im-
plicit and explicit procedures. The shear
panel is unreinforced and has a size of 1000
x 1000 mm and a thickness of 100 mm. The
material properties of the concrete are the
same as for the single element tests presented
in section 3. The prestressing is modelled
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Figure 9: Load-displacement diagrams of shear panel under non-proportional loading. Red
markers indicate non-converged steps for the implicit FEM analysis.

by a compressive stress of σcp = 6N/mm2

and is applied as a prescribed deformation
load in the y direction. The geometry is
subdivided into 8 elements, resulting in an
element size of 125 x 125 mm2. The load-
displacement curves are presented in fig. 9a
and fig. 9b for the rotating and fixed for-
mat respectively. The red markers indicate
the load steps that are not fully converged
in the implicit analysis. In terms of load-
displacement response, the explicit models
are more brittle compared to the implicit
analysis. Comparing the crack pattern of
the implicit and explicit solution procedure
for the rotating crack formulation fig. 10, it
is noted that the crack strain magnitude of
the explicit results is slightly larger than for
the implicit results. Conversely, the crack
bandwidth, in this context meaning the area
of the elements whereover the diagonal crack
is distributed, is slightly narrower in the ex-
plicit analysis. In other words, the crack pat-
tern of the explicit solution procedure tends
to localize more than for the implicit solution
procedure. The lack of convergence for the
implicit procedure obviously results in a less
sharp and irregular localization, and a too
high residual post-peak branch for the im-
plicit procedure, as compared to the explicit

procedure which has no problem in following
the steep structural softening down to zero.
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Figure 10: Crack patterns of shear panel un-
der non-proportional loading (∆ux = 2mm).

4.3 Shear critical RC beam
The final case study entails a shear crit-

ical reinforced concrete (RC) beam without
shear reinforcement, again taken from the ex-
perimental campaign conducted by Sarkhosh

8



N.W. Kostense, Y. Yang, M.A.N. Hendriks, J.G. Rots

et al. [12]. Such a shear critical beam is
notorious for its brittle failure mode, from
which the physical behavior is known to be
quite challenging to capture with conven-
tional implicit solution procedures. This is
illustrated in fig. 12, which depicts the exper-
imentally obtained failure indicating sudden
brittleness, where shear failure is established
within a time interval of ∆t = 0.01s. The ex-
perimental program encompassed seven dis-
tinct series of beams, designed to analyze
both short-term and long-term influences on
shear resistance. For our analysis, we focus
on the first series, which exclusively com-
prises short-term tests involving six identical
specimens, denoted as S1B1 to S1B6. The
beams are subjected to 3-point bending con-
figuration, possess dimensions of 3000 x 450
x 200 mm3 and incorporate three longitudi-
nal reinforcement bars, each with a diameter
of 20 mm. The effective span of the beam
measures 2400 mm, yielding a shear span-
to-depth ratio of 2.93. To avoid anchorage
failure, anchoring plates are affixed to the
longitudinal reinforcing bars at the bottom
of the beam, securely fastened at both ends.
The dimensions and reinforcement details of
the beam are presented in fig. 11. To charac-
terize the material properties of the concrete,
we rely upon data from experimental inves-
tigations, and these properties are displayed
in section 3. The finite element model is dis-
cretized with a uniform mesh with an average
element size of 20 x 20 mm2 elements, re-
sulting in 23 elements over the height of the
beam. The reinforcement is modelled with
simple truss elements under the assumption
of perfect bond, letting the nodes of the truss
elements coincide with the nodes of the con-
crete. As no yielding of the reinforcement
is expected, the truss elements are modelled
with a linear elastic constitutive law, with
a Young’s modulus of E = 200000N/mm2

and a cross sectional area of As = 942mm2.
As in the preceding case studies, the load-
ing protocol remains consistent, applying a
constant velocity-controlled load within the

explicit solution framework.

Figure 11: Shear critical RC beam, taken
from [12].

Figure 12: Shear critical RC beam within
∆t = 0.01s, taken from [12].

The outcomes of the fixed crack formu-
lation are depicted in fig. 14c and fig. 14b
for the implicit and explicit analysis respec-
tively, showcasing the crack pattern right
after the ultimate load values has been
reached. Both the implicit and explicit anal-
ysis yield comparable and realistic crack pat-
terns, aligning closely with the experimen-
tal observations. It is worth highlighting
that the crack pattern discerned through
the explicit solution procedure exhibits a
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stronger resemblance to the experimental ob-
servations. This close correspondence un-
derscores the fidelity of the explicit solution
method in capturing the intricate behavior of
the shear critical RC beam under investiga-
tion. The load-displacement diagrams stem-
ming from the fixed crack formulation are de-
picted in fig. 13b. They represent the experi-
mental maximum load accurately, where the
implicit solution procedure yields a slightly
higher peak load than the explicit solution
procedure. Another outstanding difference
is observed in the post-peak trajectory. In
the explicit analysis, the load drops to zero,
whereas in the implicit analysis, it contin-
ues with another rising branch. The post-
peak load trajectory in the implicit analysis
is accompanied by a large number of non-
converged load-steps, which renders the re-
sults unreliable. Evidently, the explicit anal-
ysis does not suffer from such convergence
issues.

Findings from the analysis of the rotating
crack formulation for the implicit fig. 14a and
explicit fig. 14b frameworks reveal a peculiar
behavior in terms of crack pattern. Remark-
ably, a distinctive crack pattern emerges, ex-
hibiting certain characteristics that deviate
from physical expectations. The observed
crack pattern is best described as a delam-
ination of the concrete layer below the rein-
forcement. This phenomenon is attributed
to the excessive rotation of the crack beyond
reasonable limits, tending to align it with
the rebar direction, rather than keeping the
cracks orthogonal to the rebar. In a previ-
ous study similar over-rotation of cracks was
reported [13]. This over-rotation emerges in
specific situations and is qualified as a de-
ficiency of the rotating crack formulation.
The results indicate once again that the
choice of the crack formulation should not
be taken lightly and can be a decisive factor
in the accuracy of the analysis. Following the
non-physical nature of the crack pattern ob-
tained with the rotating crack formulation,
the load-displacement diagram is for com-

pleteness given in fig. 13a. We observe that
the peak load is far too low, and a residual
rising branch is found which cannot be ex-
plained from physical reasoning as dowel ef-
fects have been excluded from the analysis.

5 DISCUSSION AND CONCLUSIONS
As we conclude this exploration study be-

tween implicit and explicit solution proce-
dure, several key takeaways are pointed out.

1. A total strain based smeared crack
model has implemented within an ex-
plicit framework for the first time.
With the implemented constitutive
model in place, the explicit solution
procedure is capable running the anal-
ysis without any stability issues, were
the implicit solution procedure is suf-
fering from non-converged load steps.

2. With the adopted constitutive model,
the implicit and explicit solution pro-
cedure show equivalent results for the
single element tests. Only a minor
difference is observed in the softening
behaviour of the single element tests,
which is subscribed to the smaller step
size of the explicit solution procedure.
The Poisson ratio is scaled propor-
tional to the damage variable, which
is for efficiency reasons taken from the
previous load step.

3. The explicit solution procedure is ca-
pable of capturing the structural re-
sponse of the chosen benchmark prob-
lems. By applying an appropriate
load rate, a quasi-static response could
be obtained, which can be verified by
monitoring the kinetic energy of the
system and the out-of-balance reaction
forces.

4. When encountering rapid crack devel-
opment in structural response lead-
ing to highly brittle failure, the ex-
plicit solution method proves its capa-
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Figure 13: Load displacement diagram of analysis of shear critical RC beam under 3-point
bending

bility to promptly capture these signif-
icant changes due to the small adopted
timestep. This phenomenon becomes
apparent when examining the bench-
marks of the shear critical RC beam.
Here, the governing crack emerges
within a very short timeframe, mak-
ing it hard to capture by an implicit
schema. The explicit solution method
emerges as a feasible alternative in sce-
narios characterized by sudden shifts
in the dominant crack pattern, show-
casing its potential to outperform the
implicit method in such circumstances.

5. The rotating crack orientation is found
to suffer from over-rotating cracks due
to excessive rotation of the crack be-
yond reasonable limits, tending to align
it with the rebar direction, rather than
keeping the cracks orthogonal to the re-
bar. This observation is in line with
the findings of [13], where the rotat-
ing crack orientation is found to be less
suitable for the modelling of RC beams
without shear reinforcement.

REFERENCES
[1] J. G. Rots. Sequentially linear contin-

uum model for concrete fracture. Frac-

ture mechanics of concrete structures,
13:831–839, 2001.

[2] Hendriks M. A. N. Rots J. G. Slobbe,
A. T. Sequentially linear analysis of
shear critical reinforced concrete beams
without shear reinforcement. Finite El-
ements in Analysis and Design, 50:108–
124, 2012.

[3] Yang Y. Wang J. J. Fan J. S. Tao M.
X. Mo Y. L. Liu, C. Biaxial rein-
forced concrete constitutive models for
implicit and explicit solvers with re-
duced mesh sensitivity. Engineering
Structures, 219:110880, 2020.

[4] D. A. Hordijk. Local approach to fatigue
of concrete. 1993.

[5] P. H. Feenstra. Computational aspects
of biaxial stress in plain and reinforced
concrete. PhD thesis, Delft University
of Technology, 1993.

[6] Kay G. J. Simo J. C. Govind-
jee, S. Anisotropic modelling and
numerical simulation of brittle dam-
age in concrete. International journal
for numerical methods in engineering,
38(21):3611–3633, 1995.

11



N.W. Kostense, Y. Yang, M.A.N. Hendriks, J.G. Rots

εcr

0.000

0.665

1.330

1.995

2.660

3.324
×10−1

(a) Implicit - Rotating

εcr

0.000

0.254

0.508

0.762

1.016

1.270
×10−1

(b) Explicit - Rotating

εcr

0.000

1.862

3.724

5.587

7.449

9.311
×10−2

(c) Implicit - Fixed

εcr

0.000

0.374

0.748

1.123

1.497

1.871
×10−1

(d) Explicit - Fixed

Figure 14: Crack pattern of shear critical RC beam under 3-point bending

[7] Hendriks M. A. N. Rots J. G. De-
Jong, M. J. Sequentially linear anal-
ysis of fracture under non-proportional
loading. Engineering Fracture Mechan-

ics, 75(18):5042–5056, 2008.

[8] Collins M. P. Vecchio, F. J. Compres-
sion response of cracked reinforced con-

12



N.W. Kostense, Y. Yang, M.A.N. Hendriks, J.G. Rots

crete. Journal of structural engineering,
119(12):3590–3610, 1993.

[9] Blaauwendraad J. Rots, J. G. Crack
models for concrete, discrete or
smeared? fixed, multi-directional or
rotating? HERON, 34 (1), 1989, 1989.

[10] Hendriks M. A. N. Rots J. G. Yang Y.
Engen M. van den Bos A. A. de Put-
ter, A. Quantification of the resistance
modeling uncertainty of 19 alternative
2d nonlinear finite element approaches
benchmarked against 101 experiments
on reinforced concrete beams. Struc-
tural Concrete, 23(5):2895–2909, 2022.

[11] Pramono E. Sture S. Willam, K. Fun-
damental issues of smeared crack mod-

els. In Fracture of Concrete and Rock:
SEM-RILEM International Conference
June 17–19, 1987, Houston, Texas,
USA, pages 142–157. Springer, 1989.

[12] R. Sarkhosh. Shear Resistance of Re-
inforced Concrete Beams without Shear
Reinforcement under Sustained Load-
ing. PhD thesis, 2014.

[13] Hendriks M. A. N. Rots J. G. Yang Y.
Engen M. van den Bos A. A. de Put-
ter, A. Quantification of the resistance
modeling uncertainty of 19 alternative
2d nonlinear finite element approaches
benchmarked against 101 experiments
on reinforced concrete beams. Struc-
tural Concrete, 23(5):2895–2909, 2022.

13


	INTRODUCTION
	METHODOLGY
	Finite element discretization
	Constitutive model
	Solution procedures

	VALIDATION AT ELEMENT LEVEL
	COMPARISON CASE STUDIES AT STRUCTURAL LEVEL
	Notched beam
	Shear panel under non-proportional loading
	Shear critical RC beam

	DISCUSSION AND CONCLUSIONS



