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Abstract

A simple method, named peak-load method, is proposed for deter-
mination of material fracture parameters K°,, and CTOD., of the two-
parameter fracture model (TPFM) from the peak loads of three or
more distinct specimens. This method is verified by beam bending
and split tension tests. A quantity called specimen distinction number
is proposed to quantitatively distinguish specimens. The larger the
differences in specimen distinction number among all the test
specimens, the more confident the results obtained by the method. By
using the peak-load method, the peak loads measured in previous
fracture tests for applying the size effect model (SEM) can be used to
determine K°, and CTOD,. The relationship between K°,, and CTOD,
in TPFM and G; and ¢, in SEM is established. The equivalency
between the fracture models can provide appreciable flexibility for
research and engineering practice.
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1 Introduction

The two-parameter fracture model (TPFM) (Jenq and Shah, 1985)
introduces two material fracture parameters K°;,. and CTOD, to charac-
terize the fracture properties of concrete. A three-point bend beam
has been suggested for measuring values of K°;,, and CTOD, by RILEM
(1990). In the test the initial compliance and the compliance at the
peak load must be measured. Therefore a closed-loop testing machine
is required to record load versus crack mouth opening displacement
relation in loading and unloading.

However, a closed-loop test system may not be available in many
laboratories and worksites. Thus Tang, Ouyang and Shah (1995) have
proposed a simple procedure to determine K*,, and CTOD, from peak
loads of three or more distinct specimens. This method is named
peak-load method to distinguish it from the test method recommend-
ed by RILEM, which is called compliance method. In this paper, a
quantity is proposed as a measure of confidence level for K*, and
CTOD, determined by the peak load method. Based on it, another
quantity called specimen distinction number is proposed to distinguish
specimens in the sense of the proposed method. With the peak-load
method, it becomes possible to use existing data of the measured peak
loads for applying another popular fracture model of concrete, the size
effect model (SEM) (Bazant and Kazemi, 1990), to determine K*,. and
CTOD, and examine the relationship between the two fracture
models. Ouyang, Tang and Shah (1995) have studied tensile specimen
with a center crack and three-point bend beam and proved that K°,
and CTOD, of TPFM and G; and ¢; of SEM can be converted from
each other with no significant numerical differences.

2 Peak-load method for two-parameter fracture model

According to TPFM, the critical stress intensity factor K°, and the
critical crack tip opening displacement CTOD, uniquely determine the
critical nominal stress oy, and the effective critical crack length a.. The
failure criterion of a concrete structure is then simultaneous satisfac-
tion of the following two equations:

Koy, a) = K , (1)

(o4

CTOD(o,,, a)) = CTOD, )
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where calculation on the left side of Egs. (1) and (2) can be expressed
through an analytical or numerical solution based on linear elastic
fracture mechanics (LEFM). Solution of K°,, and CTOD, from
measured oy, values through Egs. (1) and (2) is the basis of the peak-
load method. If one applies Eqgs. (1) and (2) to two different
specimens, the following four equations are obtained:

KII(U}VC’ acl) = Klf (3)
CTOD Y(o,,, a}) = CTOD, 4)
Klz(of\fc’ azc) = Izlc (5)
CTOD ¥d%,, a?) = CTOD, (6)

where superscripts 1 and 2 denote two different specimens. If critical
nominal stresses o'y, and oy, for two different specimens are mea-
sured, Egs. (3) to (6) provide four simultaneous equations for four
unknowns of a’,, a’,, K%, and CTOD,. To avoid mathematical
difficulty, an efficient procedure for determining K°,, and CTOD,, in
conjunction with a’, and &, is suggested subsequently.

With o'y, known, Egs. (3) and (4) can be rewritten as

KZ = K'(@) ¢

CTOD = CTOD(a]) - (8)

Likewise, Egs. (5) and (6) can be rewritten similarly. Combination of
Egs. (7) and (8) can be considered the parametric form of a function
for CTOD, in terms of K*,, with a’, as the parameter for specimen 1.
The Cartesian form of the function is

CTOD, = fi(K*5,) - 9)

A similar equation can be obtained for specimen 2. If tests of two
different specimens were conducted with "exact" measurement of oy,
and specimen dimensions, the intersection point of the two CTOD, -
K°®,, curves would be the solution.

Because of randomness of concrete properties and errors in mea-
surement, at least three different specimens should be tested for
statistics data modeling. Based on the CTOD, - K°, curve of each
specimen, an average of CTOD, values can be calculated. Then
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solution of K*,, and CTOD, can be found by applying the least-squares
error criterion, that is, by minimizing the following function:

fKS) = E (CTOD #* - CTOD ) (10)

where n is the number of specimens, CTOD™, is the average value of
CTOD, of all n specimens, and CTOD', is the CTOD, value for the ith
specimen. In the function f in terms of K, the value of K°, at which
the minimum f occurs is the solution of material parameter K°,
designated by K°, *. By substituting K°.* into the average CTOD, - K°,,
curve, the solution of CTOD_, designated by CTOD_ *, is obtained.
The symbol * is used to indicate the values determined by the peak-
load method. The parameter K°,, rather than CTOD, is chosen as the
variable in a simple one-dimensional optimization, because of the fact
that values of K°,, obtained from different specimens of the same
batch of concrete with the compliance method are very close to one
another but values of CTOD, show considerable scattering (Karihaloo
and Nallathambi, 1991). Originally, the sample standard deviation, s,
instead of f, was suggested to minimize (Tang et al., 1995). Since f =
(n - 1)s* with n as a constant for a set of specimens, results of K°.*
and CTOD_* obtained by minimizing f and s make no difference.

The peak-load method is based on the proposition that K°,, and
CTOD, are materials constants. Therefore the statistics modeling
involved in the peak-load method is not to average the data scatter
due to randomness of material properties and errors of measurements,
but to select an average value of CTOD, whose variance is the least
among all the possible values of CTOD, for different specimens. In
order to use the peak-load method, the test specimens should be so
different that the CTOD ¢ - K*,_ curve is not significantly disturbed by
the random errors. In minimizing f for K°,* and CTOD_*, these
determined values are of higher confidence when Af is higher for a
given small AK®,. Thus, the following quantity 8 can be used to
measure the confidence for K°,.* and CTOD. *:

B =3 (k™-k*y (11)
i=1
dCTOD
k= | ——— (12)
aK;’ L.
K=K
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because Af = B(AK®,)?. The quantity 3, equal to half the curvature of
the f - K%, curve at the minimum f, is named confidence level for K°;
and CTOD, determined by the peak-load method. Thus specimens
can be approximately distinguished by the value of k, in the sense of
the peak-load method. The quantity k is named specimen distinction
number. By comparing LEFM formulas for K, and CTOD, one can
find how k depends on specimen geometry, specimen size and notch
length. With these two proposed quantities, specimens can be well
designed so as to enhance the confidence for K°;, and CTOD,
determined by the peak-load method.

3 Experimental verification of peak-load method

To verify the proposed peak-load method, eight three-point bend
beams and six split tension cylinders from the same batch of mortar
mix were prepared and tested. Proportion of water, cement and
aggregate in the mix was 1 : 2.5 : 5. The maximum size of the
aggregate was 3 mm. The notch in the beam specimen was formed by
sawing, whereas it was precast for cylinder specimens. All the beams
were 50.8 mm deep and 25.4 mm wide with the ratio of the support
span to the specimen depth of 4:1. All the cylinder specimens were
102 mm in diameter and 31.8 mm in thickness. Other dimensions of
the specimens are presented in Tables 1 and 2.

All the beams were tested according to the compliance method to
obtain K}, and CTOD,, which are shown in Table 1 along with values
of the peak load P,. The average values of Kjand CTOD, from all the
beam tests but the last test in Table 1 are 0.883 MPa-m'? and 0.00754

Table 1. Dimensions of three-point bend beams and values of K;. and
CTOD, obtained by the compliance method

group | a, (mm) | P (N) | K (MPa-m'®) | CTOD_ (mm) | k (10* MPa'+m'?
7841 | 0911 0.0103
! 102 7172 | 0.768 0.0073 0290
‘ 5475 | 0.827 0.0073
2 17.8 535.0 0.787 0.0065 0.281
6534 | 1033 0.0102
4309 | 0.89%4 0.0050
3 254 387.0 0.962 0.0062 0.241
4507 | 0.740 0.0022
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Table 2. Dimensions and peak loads of split tension cylinders

specimen group | notch length 2a, (mm) | P, (kN) k (10° MPa' - m'?)
1 10.2 23.6 0171
233
2 17.8 0.204
19.8
18.0
3 254 17.3 0.230
171

mm, respectively. Data of the last test are not included in the average
because CTOD, from the test deviates largely from the average. The
elastic modulus obtained from these beam tests was E = 27.8 GPa.
In split tension of the cylindrical specimens, only the peak loads were
recorded (Table 2). Wooden load-bearing strips used in the tests were

10 mm wide.

The specimens were grouped according to the notch length. Based
on the average peak load of each specimen group the CTOD -K;.curve
was established by using LEFM formulas for the beam (Jenq and
Shah, 1985) and the cylinder (Tang, 1994). Then the f-Kj. curve was
constructed. Figs. 1 and 2 show the CTOD -Kj.curves and the f-Kj,
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Fig. 1. K;. - CTOD, curves for distinct groups of split tension cylinders
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Fig. 2. f - K;. relation for split tension cylinder

relation for the split tension cylinders, respectively. The values of Ki*
and CTOD._* obtained from either and both of beams and cylinders,
with the value of 8, are shown in Table 3. The value of k for each
specimen group at the value of K;.* obtained from the beams and from
the cylinders, respectively, is shown in Tables 1 and 2. It is seen that
different notch lengths make different values of k for the specimen of
the same shape and same size. It is also seen that the split tension
cylinder provides apparently different k& values than the bend beam
and therefore combination of these two types of specimens enhances
the confidence for the values of K] and CTOD, determined.

Table 3. Values of K}, and CTOD, obtained from three-point bend
beams and split tension cylinders

test method | specimens | K5, (MPa-m'?) CTOD, (mm) | 8 (10° GPa?*m)
compliance | beams 0.883 0.00754 N/A
peak load beams 0.929 0.00820 0.135
peak load cylinders 0.921 0.00709 0177
peak load beams and | 0.881 0.00739 1.40
cylinders
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4 Relationship between TPFM and SEM

By applying both the two-parameter fracture model (TPFM) and size
effect model (SEM) to the infinitely large specimen with the infinitely-
long initial crack, the following relationship can be obtained:

G = (Kff)z - (K,f )2 (13)
f E’ E’

where E’ = E for plane stress and E’ = E/(1-¥°) for plane strain, E is
Young’s modulus, and » is Poisson’ ratio. Since the initial crack, a,,
is usually related to the material defect, the length of the fracture
process zone may not be small compared to the material defect even
for a very large specimen. Therefore a more general relationship be-
tween CTOD, and c; needs to be considered.

In the tensile specimen with a center crack, if the specimen is
infinitely large, the crack opening displacement (COD) can be
expressed as follow,

4
CoD - E‘f/i\/a Ty (15)

Denoting the critical crack length a. = a, + ¢, one can obtain the
process zone length:

2
E'wCTOD ? E'xCTOD? (16)
c=——° % a02 P - a,
32Gf 32Gf

In the three-point bend beam, the formulas based on the finite
element results (Jenq and Shah, 1985) leads to

¢ =10.292a,+0.057

G

f

E'CTODa, . |E'CTOD; 2
L Y - <
(17)

f

0.061E'CTOD ?
+ < - 0.540a,

G;
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When the specimen is very large, the boundary does not restrict the
development of the process zone, the process zone length in Egs. (16)
and (17) should be equal to ¢, These equations were verified with the
data from Bazant and Pfeiffer (1987). The results are shown in Fig.
3, where K and CTOD, of TPFM were obtained by the peak-load
method, ¢, was obtained by the size effect method, and all the marks
represent the process zone length calculated with Eq. (16) or (17). All
the values of the process zone lengths are quite close to one another.
In other words, the two fracture models are equivalent to each other.
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Fig. 3. Values of ¢, by proposed relationships
5 Conclusions

The simple method of determining K3 and CTOD., from the measured
peak load of distinct specimens is a reliable method. The values of K|,
and CTOD, obtained by the peak-load method and obtained by the
method recommended by RILEM match each other very well. By
using the specimen distinction number and the confidence level as the
criterion, specimens can be well designed to achieve confident results.
Relationship between the fracture parameters of the two-parameter
fracture model and the size effect model is studied. As concluded,
these parameters of the different models can be derived from each
other. The two models are equivalent.
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