Fracture Mechanics of Concrete Structures, Proceedings FRAMCOS-2, edited by Folker H. Wittmann, AEDIFICATIO Publishers, D-79104 Freiburg (1995)

A METHOD TO EVALUATE TENSION SOFTENING MODEL FOR CONCRETE

N. Nomura and H. Mihashi

Department of Architecture, Faculty of Engineering, Tohoku University Sendai, Japan

Abstract

A convenient method to determine the parameters of bi-linear tension softening model by using a standard fracture energy test have been studied. With introducing new empirical parameters, brittleness index (BRI) and initial fracture work (g_{β}) , it is indicated that the first and second slope, T_1 and T_2 , of the bi-liner model can be determined by g_{β} - T_1 relationship and BRI- T_1T_2 relationship. In addition, with the fracture energy and a tensile strength all four parameters of bi-linear model is capable of assessing. A verification using the results of three-point bending test and wedge splitting test was made.

1 Introduction

For evaluating the tension softening of concrete, several methods have been reported in empirical and/or theoretical approach such as Cornelissen et al. (1986), Roelfstra et al. (1986), Li et al. (1987) and Hu et al. (1989). From the numerical point of view, however, those methods does not seem to be convenient to determine the model for an numerical analysis such as finite element analysis. The object of this paper is to describe an empirical and simpler method to evaluate the tension softening of concrete. Basic concept is to determine the parameters of bi-linear type tension softening model based upon a fracture energy test result.

2 Outline of procedure

2.1 Procedure

When we adopt the bi-linear tension softening model in a numerical analysis, it is necessary to determine the four parameters of the bi-linear model, F_t , s_1 , w_1 and w_2 (Fig. 1). In this case the F_t in not a tensile strength but an internal local stress level where local softening takes place. To determine them, a fracture energy (G_F) test, a tensile strength (f_t) test and a static elastic moduli test are of use. The step of procedure is:

- 1. F_t is determined by using F_t -f_t relation which is an empirical relationship.
- 2. s_1 , w_1 and w_2 are not directly determined. They are calculated from some medium parameters, T_1 , T_2 and G'_F (Fig. 1). T_1 and T_2 is the first

and the second slope of the bi-linear model respectively, and G'_F is fracture energy calculated from the bi-linear model.

- 3. T₁ is determined by using g_{β} -T₁ relation which is established by numerical experiments. Here, g_{β} is a new empirical parameter related to the initial part of fracture work.
- 4. T_2 is determined by using BRI- T_1T_2 relation which is an empirical relationship. Here, BRI is a new empirical parameter related to the brittleness of material.
- 5. G'_F value is considered to be the same to G_F obtained by an actual fracture energy test.

Fig. 2. Procedure to determine parameters

2.2 Relationship between parameters

The parameters are related to each other. T_1 , T_2 and G'_F are defined by the expression (1).

$$T_{1} = \frac{w_{1}}{F_{t} - s_{1}}$$

$$T_{2} = \frac{w_{2} - w_{1}}{s_{1}}$$

$$G'_{F} = \frac{1}{2} (F_{t}w_{1} + s_{1}w_{2})$$
(1)

If F_t is a known parameter, then:

$$s_{1} = (2G'_{F} - w_{t}F_{t})^{0.5} / (T_{2} - T_{1})^{0.5}$$

$$w_{2} = w_{t} + (2G'_{F} - w_{t}F_{t})^{0.5} (T_{2} - T_{1})^{0.5}$$

$$w_{1} = w_{t} - T_{1}(2G'_{F} - w_{t}F_{t})^{0.5} / (T_{2} - T_{1})^{0.5}$$

$$; w_{t} = T_{1}F_{t}$$
(2)

Fig.2 illustrates the procedure of determining the softening model parameters from conventional tests and the concerned relationship.

3 Experimental verification

In order to verify the concept of determining the parameters in bi-linear softening model, our experimental results previously presented (Mihashi (1992), Kim (1992)) were of use. In the previous study, three different strength of concrete with varying a maximum aggregate size had been tested.

dmax	W/C	w	С	S	G	Si	s.p.	fc	ft	Es	Ed	Vp	BRI
(mm)				(kg)			(cc /CW)		(MPa)		(GPa)	(mm ³ /g)	(m ⁻¹)
25	0.25	111	444	721	1006	111	35.5	96.4	6.42	41.5	54.4	29.9	7.91
25	0.24	111	472	721	1006	83	40.6	72.8	6.88	45.6	51.4	27.8	7.80
25	0.47	160	340	721	1006	60	12.1	60.2 68.8	4.70 5.18	34.0 38.0	43.5 44.7	60.8 46.6	4.44 5.78
25	0.60	188	313	721	1006	0	0.0	32.2	3.14	32.0	37.7	78.9	2.32
25	0.65	227	349	721	1006	0	0.0	21.4	2.88	27.8	34.5	100.6	1.59
5	0.25	111	444	721	1006	111	57.0	105.9	6.08	39.8	46.6	22.6	9.61
5	0.47	160	340	721	1006	60	28.0	58.8	3.82	35.3	41.8	49.7	3.74
5	0.65	227	349	721	1006	0	0.0	20.9	2.35	22.7	27.4	94.4	2.82
-	0.25	111	444	721	0	111	57.0	110.7	6.13	34.5	-	35.8	18.97
-	0.47	160	340	721	0	60	28.0	46.3	3.84	27.5	-	48.2	6.4
-	0.65	227	349	721	0	0	0.0	33.8	2.67	21.0	-	98.1	7.1

Table 1. Mix proportion and test results

The mix proportion and the test results of compressive strength, splitting tensile strength, static and dynamic elastic moduli, porosity and BRI are given in Table 1. The values in the table are average ones of three specimens for each series.

Three point bending test (3PB) with 100x100x840 mm and wedge splitting test (WS) with varying the size of specimen had been carried out. In this paper, the results of 3PB and the results of WS for 200 mm(height) x 240 mm(width) x 120 mm(thickness) were used. The three point bending test was followed the RILEM recommendation (1985).

4 Results and discussion

4.1 F_t-f_t relation

The F_t of each series estimated by data fit method (Roelfstra (1986)) versus the tensile strength f_t is shown in Fig. 3. The F_t is proportional to f_t up to about 3MPa. However, in the high stress range over 4MPa F_t is 30% higher than f_t . It is considered that while the F_t represents local tensile strength around a crack tip the f_t is an averaged stress calculated using a nominal section area of fractured specimen.

Fig. 3. F_t -f_t relation

Fig. 4. F_t -Vp relation

The relationship between F_t and the porosity Vp of the tested concrete is shown in Fig. 4. The diagram indicates that the local tensile strength F_t is significantly attributed to the microstructure of concrete in terms of the porosity. From these results, if the empirical F_t -f_t relation is provided for the test method of tensile strength, F_t can be determined by the relation.

4.2 g_{β} -T₁ relation

A numerical calculation of the three-point bending test has been carried out with varying the T₁ value and with keeping T₂ value for several F_t. The g_β is defined as the area of load-deflection curve, illustrated in Fig. 5, which is a work at the beginning of fracture. When β takes the value 0.5 the numerical calculation provides a relationship between g_β and T₁ as shown in Fig. 6. The g_β is divided by the thickness of specimen, b. g_β/b for each F_t is clearly described by power functions. If the coefficients of the power function are represented by the function of F_t, g_β/b is described by both T₁ and F_t. In the present case, g_β/b is expressed as:

$$g_{\beta}/b = 0.0892F_t^{3.49}T_1^{(0.213+0.0762Ft)}$$
 (3)

The experimental g_β/b measured by using load-deflection records are plotted in Fig. 5 with the value of F_t . The measured data is approximately agree with the numerical g_β/b -T₁ relationship. In an actual procedure of

determining the softening parameters, while F_t is already obtained by F_t - f_t relation, measured gg/b provides a corresponding T_1 .

The g_{β}/b -T₁ relation has to be prepared for the type of fracture energy test to be adopted. Fig. 7 demonstrates another g_{β}/b -T₁ relationship in the case of our wedge splitting test.

Fig. 5. Definition of g_{β}

Fig. 6. g_{β}/b -T₁ relationship for three point bending test

Fig. 7. g_β/b -T₁ relationship for wedge splitting test

4.3 BRI- T_1T_2 relation

The brittleness of material is represented both by elastic energy at a peak load and by the energy dissipation after the peak load. In the case of concrete, the ratio of the volumetric elastic energy $f_t^2/2E_s$ to the fracture energy G_F is capable of introducing:

 $\gamma = f_t^2 / 2G_F E_s$

If we defined a brittleness index (BRI) as 2γ , then:

$$BRI = f_t^2 / G_E E_s \tag{4}$$

BRI can be reversed to get characteristic length l_{ch} by Hillerborg (1983). In the case of BRI, the greater heterogeneity of material gives the higher value of BRI.

Fig. 8. Relation between brittleness parameters

BRI is expected to be a function of T_1 and T_2 because BRI indicates entire brittleness of whole material, as well, T_1 and T_2 represent the brittleness of tension softening model. BRI obtained from experimental data is shown in Fig. 8. BRI is expressed as the product of T_1 and T_2 :

$$BRI = 0.265(T_1T_2)^{-0.375}$$
(5)

Once the relation of BRI- T_1T_2 is established like Eq. (5), BRI obtained from a fracture energy test provides the value of T_1T_2 , which is one of condition to calculate the parameters expressed as Eq. (2).

5 Conclusion

A simple method of determining the parameters of bi-linear tension softening model of concrete is described. It is shown that new empirical parameters, brittleness index BRI and initial fracture work g_β in a fracture energy test, are related to the slopes of bi-linear model. Consequently, the parameters of bi-linear tension softening model are capable of evaluating in

terms of the relationship and by using several interrelation of the parameters.

Acknowledgement

Partial financial support under the Kajiima Foundation for this study is deeply acknowledged.

References

- Cornelissen H.A.W. et al. (1986) Experiments and theory for the application of fracture mechanics to normal and lightweight concrete. **Fracture Toughness and Fracture Energy of Concrete** (ed F.H. Wittmann), Elsevier, 565-575.
- Hillerborg, A. (1983) Analysis of a single crack. **Fracture Mechanics of Concrete** (ed F.H. Wittmann), Elsevier Science, 223-249.
- Hu et al. (1989) Fracture process zone and Kr-curve of hardened cement paste and mortar, **Fracture of Concrete and Rock** (eds S.P. Shah, et al.), Elsevier Applied Science, 307-316.
- Kim, J.K. et al.(1992) Fracture energy of concrete with diffrent specimens size and strength by wedge splitting test. Fracture Mechanics of Concrete Structures (ed Z.P. Bazant), Elsevier Applied Science, 561-566.
- Li et al. (1987) Experimental determination of the tension softening curve in cementitios composites. **Cement and Concrete**, 17, 441-452.
- Mihashi, M.H. (1992) Material structure and tension softening properties of concrete. **Fracture Mechanics of Concrete Structures** (ed Z.P. Bazant), Elsevier Applied Science, 239-250.
- RILEM 50-FMC (1985) Determination of the fracture energy of mortar and concrete by means of three-point bend test on notched beams, Materials and Structures, 18, 285-290.
- Roelfstra P.E. et al. (1986) Numerical method to link strain softening with failure of concrete. Fracture Toughness and Fracture Energy of Concrete (ed F.H. Wittmann), Elsevier, 163-176.