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Abstract 

Experimental investigations, recently performed on mixed-mode 
in concrete emphasize the path-dependency and, inducing localization, are 
strongly affected by specific phenomena linked to the heterogeneity 
material such as aggregate interlock. 
In the framework non-local damage mechanics a new to 
model cracking by means of a non-local anelastic strain tensor 
presented. The model able to take into account the induced anisotropy 
due to cracking, the position, the mean openings and the residual ...... JI. ... .., ........... ..,..., 

stresses transmitted along the cracks. 
With reference to experimented paths, some comparisons are 
in order to check the reliability of the model, and highlight some 
problems related to the non-local nature of the model. 

1 Introduction 

Fracture in concrete is a difficult problem because it induces localization 
and discontinuity in the displacement field, not only at the micro-level, 
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at the meso- and macro-level. While for a metal continuum it is 
..... ,..,. • ..,"'

1

"''"" to identify the constitutive behaviour on a meso-scale structure, 
assuming a sufficient homogeneity in the test, concrete material is strongly 

by its considerable heterogeneity (14 magnitude orders 
its constituent aggregates) and only the initial elastic behaviour 

can identified on a meso-scale structure without the rising of localization 
on a meso- and macro-level. order to take into account this experimental 

........ ~, ................ different approaches were investigated by various authors. The 
from an historical point of view, Cauchy continuum formulation 

the meso-scale concrete structure used in the tests as a 
homogeneous equivalent material, in order to identify the constitutive 

· analysing different stress paths characterized always (with the 
exception of large triaxial hydrostatic pressures) by softening and 
localization on a meso- and macro-level. Owing to localization, the test 
dimensions affect the constitutive behaviour, and the description of the 
post-peak evolution of yield-function becomes rather complex in order to 

into account induced anisotropy. Because softening causes spurious 
excessive localizations and spurious mesh sensitivity, a 

localization limiter was introduced with physical explanations which have 
mainly phenomenologic and empirical and only recently 

994) has tried to adduce certain micromechanic arguments. Other 
approaches, such microplane, lattice-model or microstructural concrete, 
take into account the heterogeneity of mesoscale and tries to identify the 
mesoscale structure behaviour by means of simpler relations describing the 
interactions among the largest aggregates and the matrix in the contact 

"'fii<>A'VJLl.IJ (Bazant and Gambarova, 1984, Fokwa, 1992). This is a fascinating 
perspective, but from an experimental point of view only meso-scale 
.n .... JL, • ..,JLJLJLU..,,,...., and static quantities can be reasonably identified, and thus the 
constitutive equations must be deduced by interpolating integral results. 

proposed model, following the non-local damage approach, tries to 
describe the meso-scale structure behaviour starting from the physical 
assumption that only 4 kinds of failure can occur: three related to cracking, 
...,...,~_.... ... ., ... ,~ out by Van Mier (tensile fracture, short inclined shear planes in two 
directions and pronounced shear band - see di Prisco and Mazars, 1994 ), 

one to crushing. This assumption permits us to describe the softening 
only with reference to those paths where kinematic quantities are 
homogeneous and experimentally measurable. This is obviously 

only exception being tensile fracture where localization is 
unavoidable. In this case two solutions can be adopted: the first one, 
performed by Bazant and Pijaudier-Cabot (1989) tries to "stabilize" the 
crack growth by means of a parallel elastic spring achieved by metallic bars 
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glued to the concrete specimen (see also Fok:wa 1992). But 
solution can be exploited adopting an approach based on the theory 
distributions according to other recent formulations (Simo et al., 1993). 

us assume to know the exact displacement field in a cracked concrete 
region which can be described by a vectorial function u(x,y,z) belonging to 
L~0c (the whole of the functions which can be integrated according to 
Lebesgue's definition). The lack of continuity prevents the evaluation 
strains which require the conventional derivation along directions 
to the coordinate axes, according to the small displacement assumption. 
Thus, to extend the continuum approach, let us introduce derivation 
sense of the Distributions, and imagine choosing a particular test-function <p 
E C

00 
which has a support defined according to fracture mechanics 

considerations or physical observations. The functional <u,cp> corresponds 
biunivocally to displacement function u, if it is known 'v'<p (where 
D = D(9t) is the vectorial space of complex functions EC00 (R)). 
function u can be decomposed two vectorial functions, one continuous, 
and so derivable in the traditional sense which reproduces local ..., ........ ., ..... ..., 
strain (u 1(x)~ Eel= Bu1(x) where Bis the usual differential operator), 
the second one u2(x), discontinuous, derivable only in the 
distributions which describes all the discontinuities due to cracks: 

(Bu2 (x),cp(s- x)) = -(u2 ,Bcp) = 'Vi/x) = Eit°Cx) 

where s, x are position vectors the Euclidean space and w is a ... '°'....,'ci""'M,.,.. 

function. Because of the heterogeneities connected to the macroscopical 
nature of concrete, only a good choice of the support function <p taking 
account the microscopic mechanical description of the representative 
volume, could allow the evaluation of a significant 'Vij which represents a 
reasonable average measure of the irreversible strains due to 
discontinuities. Nevertheless, according to the theory of distributions, 
the knowledge of a succession 'Vijn related to a base cpn 
identification of u2(x). The absence of this information nr&~"\:Tt:'Jlnf-c 

knowledge of u2(x), but the non-local tensor Eijan furnishes an 
measure of the discontinuities located along the cracks. A sort 
macroscale kinematic compliance is assumed to maintain a 
approach by means of F.E., with the displ~cement field described 
polynomial functions E Cn, and only repeated analyses with different 
could allow the determination of a discontinuous displacement field 
mesoscale. Anelastic strains, which represent the irreversible part 
global macro-strain, are expressed as function of non-local damage for 
module and assume the expression of a non-local tensor being related 
gradient of a potential function of a non-local invariant of strains ~+. 
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is a model with "rotating" cracks, but the crack orientation is related 
strain path according to Hassanzadeh ( 1991). 

2 Analytical model 

model regards damage as an isotropic scalar variable like Mazar's 
previous model (' 84): this choice is a simplifying assumption rather than an 
accurate description of the behaviour of concrete. Damage represents the 
reduction of area able to transfer stress which decreases with the growing 

microcracking and decreases even more with macrocracks. It is 
associated to the stiffness controlled by Young's modulus E. The volume 
also changes when the cracking process develops. The irreversible increase 

volume is described by means of anelastic strains strictly related to 
damage, while the reversible part is associated to the evolution of v, the 
Poisson's coefficient. Its evolution, which is assumed to be monotonic in 

to respect thermodynamic principles, is described by another internal 
variable 8, and can reach a maximum value fixed lower than 0. 5 for 

numerical stability. Having introduced the anelastic strain tensor rate 

accepted the additive cumulation with elastic strains f.ff: 
· el · an · el · an · an · * · an = Eij + £ij = £ij + Eij+ + £ij- = £ij + Eij-

stress-strain relationship becomes: 

= E0(1- D) £~-1 + E0(1- D)v0(1+8) £~-1() .. 
l+v0(1+8) lJ [l+v0(1+8)][1-2v0(1+8)] 1

J lJ 

·an 
E·· lj 

(2) 

(3) 

According to this scalar description of damage, concrete is assumed to 
remain isotropic up to failure in its mechanical constitutive behavior, but it 

induced anisotropy due to anelastic strains Eij. 
internal variables and 8 range from 0 for the virgin material to I 

( viim -1) respectively at asymptotic failure ( &ij ~ oo ). A limit is 
Vo 

necessary for the presence of positive anelastic non-local strain 
components: this limit can be established for rough cracks in terms of an 
average quantity which guaranteees the interlocking of the discontinuities 
and consequently the transmission of stresses with consequent elastic 

It can be approximated by: 
maxcian+ < da I 2lc (4) 

da is the maximum size of aggregates and le is the characteristic 
length of material (Bazant and Pijaudier-Cabot 1987). Beyond this limit, D 
is imposed equal to I which means stiffness vanishes, showing that the 
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present state of the model is not able to describe the unilateral character 
concrete. 

In case of strain-softening, spurious localization and lack of mesh 
objectivity may occur. To avoid these unrealistic features, the key idea of 
treating the elastic part of the strain as local, as suggested by Pijaudier
Cabot and Bazant '87, is here adopted. 

The non-local equivalent strain &+, which is mainly related to opening 
mode 1 in microcracking and to mixed modes 1 and 2 when macrocracks 
appear, controls the growth of all the damage laws associated to the three 
kinds of failure indicated by Van Mier '86. This non-local invariant remains 
the key of the model, as in the previous one (Mazars '84), and it is defined 
thus (Saouridis and Mazars '92): 

with 

B+(x) = -
1-J &+(s)rp(_s-x)dV 

Vr(x) v 

Vr(x) = J q>(s- x)dV ~ &+ = ±k<>J2 

v i=l 

(5) 

if&.*< 0 
! 

if &i* 2 0 (6) 

&i * are the principal strains~ rp( s - x) is the weighting function E C00;and 

Vr(x) is the representative volume at point x: 

qi(s- x) = expl (- kjsl~ xln Vr(x) = J cp(s- x)dV 
v 

(7,8) 

As specified by Bazant and Pijaudier-Cabot ('88), k can be chosen 

equal to .J--;, 2 or ( 6h)X respectively for 1,2 or 3D problems; le is the 
characteristic length of the non-local continuum and it is proportional to the 
smallest size of the damage localization zone. 

An initial elastic domain characterizes the model and it is represented 
by all the points in the principal strain space inside the surface: 

F(&+) = &+ - &to s 0. (9) 
According to a formalism, which is similar to associate plasticity, when the 
surface is reached the first time (F=O), damage rises and the yield surface is 
described by F 1uF2: 

Fi [ &~ , D, 8, a c ( CJu ) , at (CJ u)] = D - a cD c ( B+) - a1Dt ( B+) s 0 

F; [ &~ , D, 8, a c ( CJ u ) ] = 8 - a c 8c ( & +) S 0 

The evolution is described by: 

= 0: D = 0 with D 'C:. O; F s 0 

~' _ Of(D,c) D OF(&+) 
&iJ + - &to oD O&~. 

11 

<0: D= 0 

F; = O: F'z 8= 0 with 8'2:. O;F; s 0 

F;<0:8=0 
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Dl+c el (min[ ef1
(1- 2v) + vekk ]>-

/(D,c) = ;x,y>O.;c=c(s1 )= 2 (13) 
( 1 - Dx )Y ( 1- 2 u) L: < e'.f - sf 1)_2 

i=l 

where c takes into account the confinement for multiaxial compression 
stress states. 
Damage is into three parts according to the three above mentioned 
failure modes (Van Mier '86): 

D = acDc + a 1Dt = ac( crij ){[ 2-11( e; )]Df (~+) + [ 11( e; )-1 ]Df1 (~+ )} + at(crij )q(~+) (14) 

where D: ( &+ ), D:1 
( &+) (I or II indicates one or two directions with positive 

strains) D, ( &+) are spline functions identified only once, at the 
beginning, taking anelastic strains 8'(; into account and imposing 

consistency along each failure mode. The ac,at and 11 factors are expressed 
as non-dimensional functions of the principal strains. 
Adopting notation : 

5) 
in which 8;: are the positive elastic principal strains owing to positive 
stresses and 8~ are the positive elastic principal strains owing to negative 
stresses (Poisson's effect), ac and a 1 are defined as (Mazars '84): 

3 l 8e'. ( 8 e1 + 8e~ ) ] 3 l 8e~ ( 8e~ + 8e~ ) ] a = a (CJ .. ) = r1 n c1 • a = a (CJ .. ) = """"' ci n cz 
t t lJ -e12 ' c c 1J L...J -e12 

i=I &+ i=l 8+ 
(16) 

with: £~ = (17) 

assuming notation(&)_= o if 8i ~ o; (&)_ = 8i if 8; ~ o. 
function Sc(e+), is related only to damage in compression DC(&+) 

according to a trigonometric function: 

s, = M ~ [ sm2
( ;)D;(&+)} 0 ~ M < 0. 5; n := LI 

(18) 

As mentioned above, crushing in compression is taken into account too, 
but following the assumptions of the model, concrete behaviour is modelled 
by means of anelastic strains without any influence on damage. The 
uncoupling between crushing and cracking permits us to take into account 

former as a local process because it does not cause softening; thus, in 
order to simplify the F.E. implementation a local description was preferred 

spite of a previous choice (di Prisco and Mazars, '94). To "symmetrize" 
the model a function G( E_) is introduced: 

G( E_) = - £1:! ~ O (19) 
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i=l 
(20) 

The evolution is controlled by the internal variable s, defining s = E~ - Eco: 

g(E_) =goo{!- [ - 1 z]} 
exp ( E_ - Eco) 

. . 
G = o: Gs = o with s ~ o, G::; o 

-an dg(£_) · aG(£_). 
Eij- =Eco s ' 

df, as-. - lj 

G<O: s=O 
g00 ,Z are constants (g00 =130., Z .2 are chosen in the 
examples). The identification of g{£_) is related to the fourth kind of 
typical of hydrostatic process. 

The uncoupling guaranteed by the introduction of &; = &ij - &'; _ a 

mixed hardening of F;_ u F; u G domain in principal strain space, and it is 
easy to notice that the model results unassociated for a general path. 

3 Mode I and mixed mode cracking 

previous analytical presentation the proposed model highlights 
key role of the strain invariant E+ the description of cracking processes. 
When a mode one is induced, two different solutions can be followed 
order to consider the softening branch: the discrete approach as 
Crack Model (FCM) proposed by Hilleborg (see Nooru Mohamed, 1 
and the smeared approach as the Crack Band Model (CBM) proposed 
Bazant and Oh (1983). The former is able to take into account 
discontinuity of the displacement field and considers the maximum .,...,_ ... _, .............. 
strength as crack initiation criterion and a process zone where 
stresses are related to normal displacements by means of a crack evolution 
law (Carpinteri et al., 1993). The latter (CBM) permits a description 
crack in terms of stress and strain, and consequently, the 
implementation is easier, since the approach only requires a change 
stiffness matrix of the element after cracking, while the topology 
original F.E. mesh remains preserved. Three broad categories accept 
smeared crack concept: fixed, multidirectional and rotating 
approaches. The problems related to these approaches were well analysed 
and discussed by de Borst and Nauta (1985) and de Borst (1991 - see 
Nooru Mohamed 1992). 

With reference to mode I, the proposed model shows a localization 
band which is similar to the previous Mazar's model as regards its depth. 
Fig. I a shows damage risen in a continuum strip, where the central zone is 
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characterized by a smaller threshold in tension s;0 (s;0= 0.8Et0, At=0.8, 
Bt=20000; 4-nodes F.E.). With these parameters, Mazars' model shows a 
central band which has a dimension close to 3lc Oc=12mm}, and two other 

close to the bounds. Enlarging the defect depth, a single band is 
obtained. The proposed model does not present three bands, but only one 

becomes wider when damage increases. The anelastic strains which 
are related to damage by the functionf(D,c) (see eq.13), tend to concentrate 
more and more when damage increases. When a local approach is 
followed, both the models show localization in a very narrow zone close to 

defect. Fig. I b shows the load versus the vertical displacement of the 
strip, the local and non-local approaches for both the models. When 

is a stress concentration due to a notch the evolution of crack is 
Fig.2 presents the results obtained analysing the test geometry 

proposed by Hassanzadeh's specimens (1991) in plane strain condition. The 
....................... ..., parameters are the previous one. The strain invariant "E+ represents 

fracture criterion and it is shown as different characteristic lengths can 
influence the location and the evolution of the process zone, when a 
constant vertical displacement on the two horizontal opposite sides is 

. 40 
I 

A A 6. SOE-04 A l. 58E-02 

B .46 B L27E-02 B 6. 65E-02 

c . 52 c 8.48E-02 c .12 

D .58 0 .13 D .17 

E . 64 E .17 E .22 

F . 71 F .21 F .27 

G . 77 G .25 G . 32 

H . 83 H .30 H .37 

I .89 .34 I .42 

I .95 . 38 J . 47 

·--I 

damage 30 µm dam.age 10 µm 

A 2. 74E-02 A 4. 31E-05 
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(30 µm) 

20 

-·~·~ 
Load (N) 

15 

5 

~.00 

A Mazars'model (local) 
EJ Mazars'model Ocor= 12 mm) 
A Proposed model (local) 
1111 Proposed model Clcor= 12 mm) 

v(mm) 

0.02 0.04 

1. Localization in a concrete strip subject to tension: (a) damage 
patterns; (b) load-versus displacement curve (E=32900. MPa, v= 0.2) 
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cryy (v = 3µm) 
le= 12 mm 
A= .35 MPa 
J= 8.3 MPa 

PROPOSED MODEL 

Damage (v = 3µm) 
le=24mm 
A=.004 
J=.09 

A 

Damage (v = 50µm) 
le= 12mm 

~ A=.25 
J= .64 

cryy (v = 2.5µm) 
le= 12 mm 
A= .37 MPa 
J=8.4MPa 

MAZARS' MODEL 

Damage (v = 3µm) 
le=24mm 
A=.01 
J=.20 

Damage (v = 2.5µm) 
le= 12 mm 
A=.007 
J= .14 

A 

Damage (v = 50µm) 
le= 12mm 

J A~M 

s0~~~~~~-~~~~~~~~~~-1 

60 

40 

20 

test results 
(Hassanzadeh '91) 

Proposed model 
Mozars' model v(rnrn) 

J= .95 

&.~0-0~~..--~0-.~0-2~~.-~0-.~0-4~------.~~0-j.06 

35 
-+--·~~~~~-~~~ 

u=O. 
v=v 

Fig.2. Hassanzadeh's tensile test analysed by Mazars' and proposed models. 
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0.0~'--T~-.---,----.----r--,-~~~ 
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f3 = 0.6 

0.001 

'ryx (v = 20 µm) 
le= 12 mm 
A=-4.9MPa 
J= 3.7 MPa 

0.002 

FQ'1~ 

F 

u= O;v= 0. 

15 40 15 

Fig.3. Hassanzadeh's mixed mode tests (parabolic paths). 

imposed. It is interesting to note that the same does not occur when a 
Compact Tension Specimen test is performed. The reason of this 
anomalous behaviour must be looked for in the definition of the non-local 
strain invariant . When the local action principle is not respected as in 
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