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Abstract 
In this paper the numerical concrete approach is used to simulate crack 
formation and crack propagation in uniaxial tensile concrete specimens. In 
this model concrete is represented by three principal phases, each having 
its own mechanical properties. The mechanical properties of each phase 
are assumed to be statistical variables following Gauss's distributions. 
The influence of the length of the specimen on the global (macroscopic) 
mechanical properties is studied. It has been found that the macroscopic 
tensile strength decreases sligthly as the length of the specimen increases. 
The mean value of the tensile strength of the weakest phase i.e. 
interface controls the global tensile strength of the composite system. 
This analysis shows that the ductility of the composite material is strongly 
dependent on the strength differences of the phases forming the system. 
Remarkable damage occurs all over the composite system prior to the 
formation of a narrow band of real cracks. The energy dissipated by 
microcracking before the maximum load is reached (pre-peak damage 
energy) increases with the length of the specimen. After a certain critical 
length of the specimen, the fracture process can not be controlled any 
more. The system then is unstable. 
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years ago we developed an ~ ..... ,...., ... ..,,......... approach, 
concrete (Roelfstra et (1985). This "'"""'""'·~·~""""' allows us to 
.... 'U" ........ ..,,,_,._,"",~""' structure the interface consideration 

is to investigate, at 
size concrete 

'-"IJ'"'""'-'-JllL .. ...,JL ... ..., subjected to a .. u ............. ,., ......... ... 

....,..., ............. .., .. ...,. the internal structure concrete is represented by a "-''"''"' ................... ,."'-4 .... 

consisting different phases. properties of the ~ ......... ~ ... ...., ...... 
v .......... ...,....,..., as well as distribution in a given volume can be adjusted to 
............... ..., ...... ...,..., a special type concrete. 

2 

.... VJU .... B.llVLJJ' ...... ...., structure 
numerical approach, concrete is considered as a composite 

................ ..., ................. composed major phases. first phase, the dipersed 
one, represents aggregates exhibiting a certain shape 
according to a predefined distribution. aggregate 

content are two other parameters characterizing 
.., ... JL._~...,....,. as the case concrete, values are 32 mm 
%, respectively. of the computer (mass storages 
computing-time), aggregates with a larger than 4 mm are 
considered. The remaining smaller aggregates are incorporated the 
second phase. 
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aggregates are dispersed a ~AA ......... ,.1-> .... .,L..._._ .... JLL .. 

the second phase consisting on cement mortar composed of 
cement and sand-grains having sizes 4 mm. 
cement-based materials, during hydration a 
aggregates formed. zone been 

(Maso (1982), Scrivener 
It has been found that 

porous the bulk This zone plays a 
fracture process. the numercial 
.... ._. 'LJ' ........ "'·'""'"-'" as third phase. It consists on a 
inserted between inclusions and the """·~.n.·n ...... r1. 

analysis of the proposed task seems 
mesolevel because of limitations of avaliable "'"'''"""~··,1-"~ ... 

same size 
sections generated composite 
loading direction are allways 3 
(3xDm). length structure 
"""1mr1 .. ~1-,,,.,,. · ,,...."""""",,.."'1-"'·rl structures. 

was 
specimen is regarded as 3-phase ···~-~-··~·· 
then varied by adding a homogeneous part, 
elements having effective properties 
lower part Fig. I, a 
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A 

B 

..... V,l.1..11.A•"'-ll concrete is considered. this case, strength 
higher than those the 

zone. Several experimental 
..,.1.u • ..,.1.-.....1..1..11.;:;. occurs predominantly along the 
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said that the probability 
to the probabitlity of failure 

Owing of these observations, it 
behave a linear elastic way 

the numerical simulations of direct 



2.2.2 Matrix 

L'-"''""u.""·u. are: Young's Jl.LL'-'""'"'"''Jl'-"'"'' 
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Gf, of 
mortar matrix 
homogeneous systems. 
Young's AAA'-''""'"""""'-' 



Stress 

COMPRESSION 

... ..., .. , . .., ...... ...., strength is 

UNLOADING 

SOFTENING 

given mean value 
modulus also follows a 

tensile 

TRACTION 

Strain E 

'V_,,..,_ .......... u .... 'V ...... to softening 
curve is diagram is adjusted to the size of 

elements to preserve the predefined fracture energy. Table 1 
properties and 

parenthesis) numerical 
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Phases 
Gr (Nim) 
ft (MPa) 
E 
v 

ret. fact. 

1 : Mechanical properties of the phases 

A 

7 
65000 (-) 

(-) 
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Matrix Transitional zone 
60 (-) 30 
4 2 

25000 (500) 
0.2 

structure. 

Fig. I are ..._V'...._ ...... ..., ..... 

of the structure are 



Fig. 3 . Crack patterns at three different displacement states. 
(opened and closed fictitious cracks). 

a b c 

Fig. 4. Patterns of real cracks at three different displacement levels. 
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3.2 Load-displacement curves 
Simulation of the behaviour under uniaxial tension the test is run 
displacement-controled is carried out for composite structures with 
increasing length varying from 32mm (lxDm) to 240mm (7.5xDm). 
Fig.5 shows the load-displacement responses. As it can be seen in this 
figure, specimens shorter than 240mm behave in a way. But 
slopes of the descending branches the resulting load-displacement 
diagrams are getting steeper as the length of the specimen increases, in 
other words the composite structure looses apparently ductility as its 
length increases.The slope of the post-peak regime obtained for the 
structure of 240 mm is nearly vertical. This means the system is close to 
instable failure. find the critical length at which the structure looses its 
stability, length of the structure must be further increased. Because 
computer-limitation evoked in section (2.1), the composite-homogeneous 
structure (Fig. I b) with a length of 300mm is used. corresponding 
load-diplacement diagram is shown (dashed curve) in Fig.5. The 
numerical tensile test can not be controled any more if the imposed 
displacement exceeds 0,0209 mm. This means that mechanical system 

become instable. 

'C 
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32mm L(3)= 96mm L(5)=240mm 
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3 

Fig. 5. Load-displacement curves composite structures with 
length varying from 32 to 300 mm. 
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Fig. 6. 
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as 

"""''-"'"''"'-'-"""'-''·'-' ...... is confirmed by 
mean value of the tensile ....,.., .............. .... 

Fig.8 a typical 
specimen loaded in tension 
... ,,, ..... u_ ... ..,_.__._ if the specimen is ... U .. JL~'V'"''"""...,""" 
maximum load The area 

energy dissipated in 
begins to initiate. 

damage energy) is ...,, __ n _ _._..., .... _.__,.__._ .... ,....._ 

microcracks the 
amount energy 
energy 

shows crack patterns 
48 and 96 mm loaded at 

observed, that the number 

Stress 

(length) mcreases. 

m 

Elongation 

Jl._~_,L.__._...,_ ... _._...,, .... _._ experiments, damage energy is computed 
specimen length and shown It is clear from this figure 
energy increasies with the ~ ... ~ ......... ~(i.e. length) of the structure. 

function can be described by following relation : 
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Fig. of fictitious real cracks (in or closing state) 
of 3 composite structures with different The load level 
corresponds to peak of the load-dsplacement curves of Fig. 5. 
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0.12 x 

which, y [Nm] is the damage energy 
for the length of the composite structure. 
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1 stands 

300 

numerical ...,_,,..,..,,..., ... JULJU ............. u been performed by using an 
mean value i.e. 3 .5 i>.'U';L..<AA,,_..JL ...... LU ... L.L~~~.._.L"U'.LA of the tensile ,-,.,-,..,-,.,..,.,.,..,rn 

the transitional zone. 
constant. stress-deformation 
structure length is 
corresponding curve for a structure a mean strength 
interface of 2 MPa is drawn on same figure. It can be observed, 

cases, the effective strength of composite m':lt".P11"
1

':l 

equals the mean value of strength the weakest zone 
Fig.11 shows a difference in behaviour 

composite structures. The composite structure has a 
effective tensile strength first one, but its ductility is 
reduced. An important comes out of this study is 
ductility of multi-phase is governed, among other factors (e.g.: 
roughness of inclusions and Wittmann (1988)), by 
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composite concrete-like can be 
way, if the matrix, the aggregates 

consideration properly. numerical ... , .... _....,.....,....., ... 
...., ............ ...., ..... numerical concrete. 

of a composite material depends on ratio of the two 
..., .......... ,....,....,..,but it also depends severely on the the interface. 

length of a concrete element is increased the 
.. ....,.IL .... _,Jl ........ strength decreases agreement with findings . 
............ ,., ..... ,..., ..... follows the of Weibulls rna.n.-r"'{T 

pre-peak damage energy increases as 
mcreases. 

a critical length the specimen the system fails in a .......... J._ .... ,..., ... ...., 

critical length depends on the material parameters of 
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fracture mechanics. unstable cracking conditions a J.VU.•...A.vu system can 
not benefit of fracture energy. 

In any size law the 
formation has to be taken into ...,..._,JlJLUJl ...... .., ........... '"'J 
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