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Fig. 1 Pullout of a fiber from a matrix 
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as an indication of propagation of an interfacial crack, is usually observed 
before the peak load. After the pullout load reaches the maximum value 
it decreases slowly with increasing slip. This result may indicate that 
when fibers are pulled-out from a cementitious matrix, an interfacial 
crack initiates at some point before the peak, and the pullout-slip response 
is governed by propagation of this interfacial crack. A fracture 
mechanics R-curve approach is proposed to describe the pullout-slip 
response. 

2 R-curve approach for pullout of an aligned fiber 

Application of load to a structure with an initial crack of size, a0 , 

produces strain energy, U. The rate of strain energy release with respect 
to crack length, a, is denoted by G, which is a crack driving force. 
the other hand, the crack propagation at the crack tip needs to consume 
some energy, W. The rate of change of W with respect to crack length, 
a, is denoted by R, and is termed the fracture resistance. Based on 
fracture mechanics, the failure (the peak load) of a quasi-brittle material 
is governed by the following two conditions: 

G = R and 
aa aR 
aa aa 

If the pullout of a fiber from a cementitious matrix is considered as a 
mode II fracture problem, Eq. (1) can be used to describe this problem. 
However, both G and R should be known before Eq. (1) can be used. 
Stang et al. (1990) have proposed a G-curve for the fiber-matrix interface 
debonding based on a shear-lag analysis. Since only pull-out behavior up 
to peak load is concerned here, the effect of frictional stress is ignored. 
As a result, this G-curve is expressed as: 

where P is the pull-out load of the fiber, a is the debonded length at 
fiber-matrix interface, L is the fiber embedded length, r is the radius of 
the fiber, E1 is the modulus of elasticity of the fiber, and w is a parameter 
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Fig. 3 Relationship between G-curves and the proposed R-curve 

4 Predicted maximum pull-out loads of aligned steel fibers and 
experimental data reported by Somayaji and Shah (1981) 
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from Eq. (1). These critical values of G (at points A, B and C) vary with 
the fiber embedded lengths. The predicted peak pullout loads are 
compared with those experimentally obtained in Fig. 4. The proposed R
curve can reasonably predict the effect of the fiber embedded length on 
the peak pullout load. 

3 Pullout of an inclined fiber 

When a fiber is pulled out from a matrix at an inclined angle, the pull-out 
load, P0, can be divided into two components, Px and PY , as shown 
Fig. 5. The component, Px , results in pull-out of the fiber from the 
matrix, whereas the component, PY , causes bending of fiber at its exit 
point to the matrix. 

e /Py 
-----=-/~--- ~ ..,pe 

Yielding ~Px 
of fiber 

Fig. 5 Pullout of an inclined fiber from a matrix 

In order to predict change of load capacity due to inclination, 
additional energy due to fiber bending should be taken into account. This 
additional strain energy release rate due to bending of the fiber is 
(Ou yang et al., 1994) 

Gb = -~-:-~(-~-~ )l-sinh-2-[w_l_(L---a)-]} 
(8) 

where a1u is ultimate stress of the fiber, and m is a constant accounting for 
the yielding length of the fiber. Since the pullout load, P, should be 
replaced by the load component, Px = P0cos8, in Eq. (2) for the inclined 
fiber, the strain energy release rate for the inclined fiber, G0, is 
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