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Abstract

Concrete slabs subject to punching exhibit most of the characteristic
problems ensuing from concrete brittleness and non-local nature, such as
crack localization, snap-back tendency (in shear-sensitive slabs), and
different failure modes.

In order to assess to what extent crack propagation and failure modes
are altered by the introduction of a reinforcement (either fibers or a steel
net), 82 relatively-thick slab specimens made of plain, fiber-reinforced and
net-reinforced concrete were tested recently in Milan, under static and
dynamic punching. Here reference is made mostly to the static tests, whose
results are in the form of (a) load-displacement curves for different fiber
or steel contents; (b) deflection profiles at various load levels; (c) crack
patterns due to bending and shear. The results bring in new evidence on
structural ductility, crack evolution and dynamic effects in slab punching.

1 Introduction and nature of problem
Concrete slabs have lately been the subject of several studies and papers
regarding a variety of topics, such as: load-displacement response for

various geometries and restraint conditions; strength and post-peak
behavior; crack formation, propagation and localization (see the closely
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related paper by Li and Bazant, 1993); resistant mechanisms; failure modes
and size effect (Bazant and Cao, 1987); strain-rate sensitivity (Miyamoto
et al., 1991); fiber and reinforcement effects (Absi, 1994; Chen et al.,
1990, Walraven et al., 1992); static and dynamic punching (Mindess and
Yan, 1993; Toutlemonde, 1993). In spite of such efforts, several aspects
of slab behavior are still open to investigation, particularly in the domain
of shear-sensitive slabs, where - for instance - crack patterns and failure
modes are quite different depending on parameters such as fiber content
and impact velocity (Gambarova and Schumm, 1994).

Here the attention is focused on (a) the resistant mechanisms in
circular slabs subject to static punching; (b) the structural ductility, which
depends on fiber or reinforcement content; (c) the collapse modalities,
which bring in different crack patterns (radial cracking and cone-shaped
cracking); (d) the evolution of cracking in displacement-controlled loading
processes; and (e) the different energy-absorption capabilities of FRC slabs
subject to static and dynamic punching.

It was observed in previous tests on slab specimens subject to impact
punching (Fig. 1, Gambarova and Schumm, 1994) that the collapse modali-
ties of shear-sensitive slabs depend on the fiber content (PolyAcryloNitrile-
PAN fibers), because of the higher strain-rate sensitivity of fiber-reinforced
concretes, even for small fiber contents: as an example, a fiber content by
volume of 1.5% can turn a bending-type collapse (Figs. 2a, b and 3a) into
a punching-shear collapse (Figs. 2c¢ and 3d). Similar results had been
obtained by Miyamoto et al. (1991) with reference to impact velocity
(higher impact velocities in plain concrete are equivalent to higher fiber
contents, since fibers enhance concrete strain-rate sensitivity).

Since the impact tests did not allow the investigation of crack evolution
during the loading process, a series of 34 static tests was planned and
carried out, with different amounts and types of reinforcement, such as
polyacrylonitrile and steel fibers, and steel nets.

2 Test philosophy

The choice of specimen dimensions is not as easy as it might appear, since
several fundamental limitations come from the geometry and the capacity
of the loading machine, from the maximum aggregate size (which should
not be less than 12-15 mm in a concrete), from the length of the fibers or
from the (minimum) diameter of the bars (not less than 5-6 mm in
structural steel). Furthermore, in order to induce shear-sensitive behavior
and to limit snap-back phenomena (caused by the unstable propagation of
through cracks in the post-peak phase), the typical dimension (the net
diameter in a circular slab) should not be more than 4-5 times the
thickness, disregarding the dimension of the punching tip.

With d, (max. aggregate size) = 15 mm, d, (diameter of the punching
tip) = 2d, = 30 mm, P, (press capacity) = 100 kN, suitable values for the
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4 Fig. 1 - Geometry of test
specimens (static and dynamic
tests): d, = net diameter;
d, = loading-tip diameter.
f.. = 40 MPa (plain concrete).

» Fig. 2 - Possible resistant
schemes at the onset of collapse:
bending mechanism with in-
plane (a) compressive forces,

and (b) tensile forces -+
cohesive crack; (c) cohesive
crack.
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thickness and net diameter are (Fig. 1):

t = (3-4)d, = 45-60 mm; d, = d, + (4-5)t = 210-330 mm.
The nominal values t = 60 mm (reduced to 58 after polishing the upper
surface of the specimen) and d, = 290 mm were adopted (d,/t = 5).
Similar values for the ratio d,/t appear in previous tests by Bazant and Cao
(1987), d,/t = 5, and by Greszczuk (1982), Jalil et al. (1994), Regan
(1984), d,/t = 3-7 (see Refs. in Zanini, 1994).

The 82 specimens tested so far have a square plan (side 330 mm, Fig.
1) and are clamped to a cylindrical support by means of a restraining ring
(Fig. 4), in order to reproduce an axialsymmetric situation.

Among the 34 specimens subjected to static punching, 18 were rein-
forced with PAN fibers (v,=0.5, 1.0, 1.5%, I,=12, 24, 36 mm,
d;=30,100 pum) and were tested mainly to make a comparison with
previous impact tests.

The remaining 16 specimens were reinforced partly with PAN fibers
(v = 1.0, 1.5%, I; = 12 mm, d; = 100 pm), partly with DRAMIX fibers
(ve=1.0,1.5%, l; = 30 mm, d; = 500 um) and partly with a steel net (p,
= p, = 0.5, 1.0%, & = 5, 6 mm). In each sub-case, 2 nominally equal
specimens were tested, together with 4 non-reinforced specimens.

3 Test set-up and instrumentation

All specimens (34) were clamped to a cylindrical body (Fig. 4), which was
attached to the movable head (lower head) of a 8562 Instron press, fitted
with an electromechanical actuator (capacity 100 kN). The punching tip
was secured to the fixed head (= transverse beam). All tests were
displacement-controlled (1 pum/s up to the steeper part of the softening
branch of the load-displacement curve, and 4 um/s afterward). The
punching tip was fitted with 3 LVD transducers (2 appear in Fig. 5) in
order to measure the penetration of the tip into the specimen (Fig. 5b) and
the opening of the punching-shear crack (Fig. 5c).

In 27 tests the displacements at the intrados (bottom surface) were
measured by means of 16 LVD transducers held in position by a special
star-shaped support (Fig. 6), which was fastened to the inner wall of the
cylindrical body. In this way the displacement w was measured along three
radial directions, at each step of the displacement-controlled loading
process, and the three deflection curves, as well as the mean deflection
curve (see Fig. 8) were reproduced on the screen of a P.C., thus making
the control of the test more effective.

In 7 tests the star-shaped support and its transducers were removed,
to make room for a camera (Fig. 4). As a result, the photographs of the
crack pattern at the intrados and the singularities of the load-displacement
curve could be brought into mutual relation.

The displacements were continuously monitored and registered by
means of a data-acquisition unit (UPM 60), which was controlled by a P.C.
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» Fig. 5 - Sketch of the

loading-tip instrumentation and

symbols adopted for the

displacements:

A = loading-tip displacement

A* = loading-tip penetration

A, = displacement at the
intrados

6* = settlement along the
support (= 0)

8 = displacement at the

extrados (= A - A®)
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< 4 Fig. 6 - Star-shaped
support carrying 16 LVD
transducers for measuring
the displacements at the
intrados of slab specimens.

< Fig. 7 - Load-displace-
ment curves for different
contents of polyacrylonitrile
and steel fibers (p = 1.0,
1.5% by volume) and diffe-
rent reinforcement ratios
(steel net with p, = p, =
0.5, 1.0%).



4 Test results

Role of reinforcement content and type - Since the aspect ratio of the
polymeric fibers (PAN fibers) has only limited influence on slab response
(Zanini, 1994: A = 120-900), the attention is focused here on the content
and type of reinforcement (Fig. 7). As might have been expected, both the
initial almost linear branch and the peak load were negligibly affected by
the reinforcement, while the post-peak behavior was definitely softer at
high reinforcement contents, as shown by the 2% steel net, compared to
1.5% of either PAN or DRAMIX fibers. High reinforcement contents limit
the drop of the load-displacement curve after the peak, and make the
softening branch more regular and predictable.

Failure modes - As a rule, the peak load was accompanied by the
formation of a few radial cracks at the intrados, and the collapse was
characterized by the detachment of a truncated cone (owing to punching-
shear cracking). As shown by the deflection profiles (Fig. 8) at various
load levels, the behavior tends to be linearly elastic up to 75% of the peak
load, and the deflection tends to flatten-off in the central part of the slab,
beyond 75% of the peak load (descending branch), as required by the
formation of the punching-shear cone, which tends to behave like a rigid
body. As a rule, the higher the reinforcement content, the milder is the
transition from radial cracking to punching-shear cracking (Figs. 8a,b).

Punching-shear failures are characterized by the snap-back of the
displacement at the extrados (Fig. 9a, full line) and by a residual inelastic
displacement at the intrados (Fig. 9b, full line). On the contrary, bending-
type failures exhibit no snap-back (Fig. 9a, dashed line) and the
displacements at the extrados and at the intrados are fairly proportional to
each other (Fig. 9b, dashed line).

Crack evolution - Radial cracking (with few and thin cracks, Fig. 10b)
forms before the load peak, propagates at and beyond the load peak (Fig.
10a, full square at the left), but then the radial cracks tend to close, and a
circumferential crack appears (Fig. 10c,d). The formation of the truncated
cone is not blunt, but requires the dissipation of a considerable amount of
energy (Fig. 10a, full square at the right). Such behavior was common to
practically all static tests, and the residual strength during the formation of
the cone was - broadly speaking - close to 60-66% of peak strength for the
steel net, 40-45% for DRAMIX fibers and 20-25% for PAN fibers,
compared to less than 20% for plain concrete.

Static-versus-dynamic behavior - Fig. 11 clearly shows the much larger
energy dissipated during a dynamic test compared to a static test (PAN
fibers). In the dynamic tests, the load was not cleared of the inertia force,
but, since inertia effects were expected to be very limited because of slab
thickness, the curves are indicative of the remarkable concrete strain-rate

sensitivity (with or without fibers).
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Fig. 8 - Diagrams of the deflection at various load levels. PAN fibers:
fiber content by volume v, = 1.0, 1.5%; fiber length I; = 12 mm; fiber

diameter d; =100 um.
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Fig. 9 - Typical load-displacement and displacement-displacement curves
for punching failures characterized mostly by bending (I) and by shear (II):

(a) load versus displacement at the extrados

, and (b) displacement at

the intrados A, versus displacement at the extrados. PAN fibers, v, = 1%,
A = 600 in test SI0A, A = 120 in test IP120.
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Fig. 10 - Typical evolution of crack pattern in static tests: (a) load-
displacement curve of Test P15B (PAN fibers, fiber content 1.5% by
volume, I, = 12 mm, d; = 100 um); (b) bending cracks; (c) bending and
shear cracks; (d, e) shear cracks. P, = 53.1 kN.
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Fig. 11 - Load-displacement curves under static and dynamic punching
(PAN fibers, impact velocity 2.65 m/s).

5 Concluding remarks

The results of this study can be summarized as follows:

1. Greater fiber contents lead to a higher structural ductility, both under
static and dynamic loading; however, steel fibers and net
reinforcement has more than a edge over PAN fibers;

2. In static tests the peak of the load-displacement response is always
accompanied by the formation of more or less extended radial cracks,
while the post-peak behavior is definitely characterized by the
formation of a punching cone;

3. The type of failure (shear-bending failure with radial cracking, and
punching-shear failure with cone-shaped cracking) can be identified
during the test by comparing the displacements at the intrados and at
the extrados of the slab;

4. Snap-back phenomena can be detected and measured even if the test
is run by controlling the punching-tip displacement, since a kind of
"mild" softening comes from the plastic deformation of the concrete,

underneath the loading-tip. -
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