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Abstract

Under severe mechanical loading brittle material like concrete can be described
favourably using damage models. J. Mazars (1984), S. Ramtani (1990) and
C. Laborderie (1991) propose such models established within the framework of
thermodynamics. Internal state variables are used to describe cracking or micro
cracking process. The number of internal state variables depends on the level of
sophistication. Crack closure effect, inelastic strains and induced anisotropic
damage can be introduced in the constitutive equations. In order to solve in a
more efficient way dynamic engineering problems involving complex two or three
dimensional structures, damage model with explicit formulation are recommended.
Computation time can be therefore reduced drastically.

Here we present two explicit damage models. The first one uses two scalar
variables and takes into account permanent strains. This model is introduced in a
finite element program and gives interesting results. The second damage model
uses a scalar damage variable for micro cracking effects and a second order tensor
variable to model anisotropic tensile damage. Inelastic strains are also introduced.
In their respective principal axes inelastic strains and tensile damage variables can
be represented with an ellipsoid shape. This model is still under development.
Thermodynamic aspects are presented and the first evolution laws for damage
variable are discussed and the model response is presented with fixed load axes.
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1 Introduction

In order to determine the vulnerability of buried or half buried reinforced concrete
structures submitted to blast wave loading or ground shock loading, the Centre
d’ Etudes de Gramat (CE.G.) develops explicit damage models for geologic
materials. The purpose of such models is to describe behaviour of reinforced
concrete or rock media under severe mechanical loading,

Damage models can be used favourably to simulate the physical mechanism
encountered during failure of brittle materials like concrete or rock. Cracking
process with the associated loss of stiffness is well describe using internal damage
variables. Inelastic strains can also be introduced in the damage model from the
same damage state variables. Such models already exist but for practical
engineering problems an explicit formulation of the stress strain relation is able to
mcrease drastically the numerical efficiency.

More over crack closure effect, inelastic strains, strain rate effects, and sometime
anisotropic initial or induced damage, must be included in the constitutive relations
for more realistic predictions. This paper gives some considerations about explicit
damage models including such effects.

2 Two scalars explicit damage model

2.1 Stress-strain relation

The first explicit model is a two scalars damage model devoted to concrete
behaviour under reverse loading. This model can be presented as an extension of
the model developed by J. Mazars (1984). Two scalar damage variables are used
instead of one. Figure 1 shows the response of the new model under a cyclic
loading. As shown on this figure when the stress G is greater than a closure stress
op, a tensile behaviour is obtained and D, controls the stiffness. On the contrary
when o is lower than o a compressive response is simulated and D, gives the
relative magnitude of the stiffhess reduction.

For a two or three dimensional problem, the stress strain relation is:

c-0. = (1-Dy) o [kOTrace(E—Eft)l +2 1y (g—gﬁ)] 0

+(1-Dy) o, [%OTrace (g—gft)l +2 1, (§~§ft)]

Ao and po are the Lamé coefficients.
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D, and D, are the two scalars damage variables.
S is called the closure stress tensor. This stress state defines the transition state

between tension and compression.
o, can be written as follow:

1 2
S = (1-Dc) %o @
Then the closure stress decreases when compressive damage growth.

S0 is the initial closure stress tensor. sﬂo is the strain tensor associated to SO0

g is the closure strain tensor that gives the strain state associated to G "

o, and o, are scalar values that give respectively the compressive and the tensile
part of any loading.
The expression of o, is obtained from the effective stress tensor (G — _§_ﬂ ):

8-8 =MTrace(e—g )1+2p(€~¢ ) o

also if Trace (g—gﬂ) 20 o, =1
’Z< g, > +|
- |2< 5> |
o, is deduced using the next equation:
o, + o, = 1 )
From the strain tensor £ and from a scalar €. (see figure 1), it is possible to get the

if Trace (G- Sﬁ) <0 o4

compressive damage variable D, and its increment D _.
The evolution of damage D, is controlled by an equivalent strain €, related to
the growth of micro crack opening in mode 1 (Mazars, 1984):

By = X< > ()
where €;are the principal strains of the tensor €.

The closure strain increment € a is obtain from the D, value and from the strain
tensor €. Integration versus time of £ i gives € which is not related to tensile

stiffness as shown on figure 1.
Then the reversible strain tensor (€—¢ ft) allows computation of the tensile

damage variable D, which is controlled by an equivalent strain €:
& =Z<—eq); > ©

where ( € - £q) ; are the principal strains of the tensor (€ — €. ).

1003



All terms of equation (1) can be obtained directly without any iterative process,
even with large strain tensor increment.

Figure 1. Cyclic behaviour of damage model under uniaxial loading

2.2 Thermodynamic aspects
Under the assumption of proportional loading, the new model can be established
within the framework of thermodynamics. Table 1 shows selected state variables
and their comresponding associated variables.

Table 1. State variables and associated variables (two scalars model)

State variables Associated variables
Observable Internal
Strain (e-¢,) o Stress
Tensile damage D, Yix Energy
Compressive damage D, Ype release rate

Still under the assumption of proportional loading (¢, and oy are constant), the
thermodynamic potential is given by :

1
pY=> (1-D,) [)xoTrace2 (g—gﬂ) + 21, (E"Sﬁ):(g—gﬂ )]

1
+—2. (1-D,) [kOTracez(g—gﬁ) + 2l (E“Eﬁ): (E—Eﬂ )] )

+ (1-Dg)? [AoTrace(e, ) + 21 (g, )| €, )

=fi0
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Considering isothermal process, the Clausius Duhem relation that ensures
positive dissipated energy is given by:

g:E-py20 ®

As shown by C. Pontiroli (1995), for proportional loading the Clausius Duhem
mequality is satisfied if Dt >0 and Dc >0. These two conditions are
automatically satisfied because damage variables are strictly increasing variables.

3 Anisotropic and unilateral explicit damage model

3.1 Stress-strain relation

It is clear that cracking process introduces a strong anisotropy in material
behaviour. Some materials like rocks have an initial anisotropy resulting from a
layered aspect of most geologic media. For complex loading with rotation of the
load axes the anisotropy should be accounted. Such kind of behaviour can induce
significant effect in the material response. Here we present the first developments
of an unilateral and anisotropic damage model. As for the previous one, we adopt
an explicit formulation in order to preserve, as much as possible, a numerical
efficiency. The physical mechanism taking into account are similar to mechanism
modelled in the previous two scalars damage model. Here we introduce an
anisotropic tensile damage variable D, in the form of a second order damage

tensor. The stress strain relation of the anisotropic model is given by:

g-gft = (I—DC)[lOTrace(g—gﬁ)l + 2u0 (g—gft)]

+ O
[xOTrace“—Dcp% (g—gﬂ)(gt—ncg)%ﬂ ©

) 1 1
+ ZHO(QM—DCL)A (g—gﬁ)(gt~Dc1)/2J

Notations are similar to the previous one’s. Crack closure effect is simulated using
positive part (positive principal values) of tensor inside brackets. A two scalars
damage model is recovered replacing the tensile damage tensor D tby a scalar D,.

3.2 Thermodynamic aspects
Selected state variables and their corresponding associated variables are given in
table 1 but tensile damage variable is now a second order tensor.

The thermodynamic potential as the following expression:
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py :% (1-D )[kOTrace(e—ﬁ YE+ 2pp(e-¢ )]: (S"Eft)

(10)
1[ OTrace (D -D I)/ (- e )(D -D I)/I
- (g - E
2[+2u0(n DI)/(ee)(D DI)/J fi
Using the Euler theorem, derivation of this potential versus the observable state
variable (€ — gft) gives the associated variable ¢ . Euler theorem states that if p(X)

dp(X)
oX

)

is a homogeneous function on X (p (AX) = A p (X)) then X is equal to X.

Here terms inside brackets in relation (9) are homogeneous function of (€ — Eﬁ)

and the theorem can be applied.
Clausius Duhem inequality is not easy to verify when the principal axes of the load
rotate. This problem is investigated.

3.3 Evolution laws of the irreversible strain gﬁ

As for the two scalars damage model, the strain tensor increment éft is set

independent on tensile damage variables and it is dependent on irreversible
compressive damage variables. gﬁ has the same principal axes than (g—gﬂ)

tensor and its principal values are obtained using the following relation:

Dcl '/(1 - Dcl)
(—Efc o o ®
g;L o g O J De, /(1-De,) (11)
” noTe Dc3 /(I_Dc3)

D,; are irreversible variables related, as shown later, to the negative principal
compressive strain (€; )" .

€ is a scalar value that defines the fictitious strain state at the focus point for
unloading compressive path.

o is a material dependent scalar value. This parameter can be chosen in order to
get a given apparent Poisson ratio v, at the peak stress under uniaxial compressive

stress.
If - £, is the strain associated to the peak sfress, o can be written as follow:
I-D
0= VgEq +z—:p(vp —vo) D -+ (12)

Y
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Vj is the elastic Poisson ratio.

V,, 1s the apparent Poisson ratio at the maximum compressive stress.

D, is the compressive damage value at the peak stress.

If v, is equal to v, the apparent Poisson ratio keep a constant value. When v, is
greater than v,, the apparent Poisson ratio increases with the load during an

uniaxial compressive test.
v, can be set equal to 0.5 for concrete material. This parameter is useful to control

volume change under meanly compressive loads.

For biaxial plane stress loading, the expression of & is modified m order to get
constant focus point coordinates:

+
6t =0 + 0 <——~Z~“-:—-— - 1> (13)
Max (0 i)
€50 1S a positive scalar equal to the focus point strain component for a one
dimensional plane stress compressive test.
G, is the principal effective stress component given by:
8= AgTrace (g-gft) I+2p, (e-¢g,) (14)

3.4 Evelution laws for damage variables
3.4.1 Compressive damage variables:
As shown in relation (11), g’ﬂ is related to D; , i= 1to 3. Evolution of Dy s

obtained using a modified evolution law proposed by J. Mazars (1984).

D is given from the next relation:

(Ei-g5)"
€p

1 £¢ Ep €
I_Dci:,\, . 0 - + P Clc
gci +8fc Ep “80 gp “'80

exp + e | (15

€ is a compressive strain threshold. € is an equivalent compressive strain
defined by €; =+/¢€,)? , (€;)_ is the negative principal strain.
The compressive damage variable D, is obtained using €, in relation (15) with:
&=V &) (16)

Remarks: Compacting phenomena under high compressive stress could be
simulated by increasing &g versus the negative part of the volumetric

strain €,. This aspect is investigated.

1007



3.4.2 Tensile damage variables:
Evolution law of the second order tensor Qt is obtained using the general relation:

o2 -5(o.) w
2:1 refers to the updated value or the new tensile damage tensor and 2:’ refers to

the old value. AI=)t represents the tensile damage tensor increment.

The expression of the R function is not yet established when the principal load
axes rotate. This function has to verify the two following conditions:
- The new pnncipal values of the updated tensile damage tensor
should be greater or equal to the previous one.
- These principal values should be less or equal to 1.
For fixed load axes expression (17) takes the simple form:

D'=D’+AD (18)
A_Q_thas the same principal axes than the effective stress tensor §.
Principal values of Agt are obtained using a modified J. Mazars law:

Ad =(dti)n"’(dti)0 if (dy)" >(dli)0
Ady =0 if (dg)" <(dg)°

The expression of dy is related to principal effective stress components and to
principal closure stress components. dg is given by:

(19)

1 ~ -B({ & - of _
1-dy =~_+—“T[03 (1-A) + A T Gexp BlGy =0t [Bo _ ftiJ
Ciy —Om
and d; > (D )" (20)

G is the positive part of the principal effective stress component.
Oy is the negative part of the principal closure stress component.
oy is the compressive stress damage threshold.

A, and B, are the Mazars coefficients.

3.5 Response of the anisotropic and unilateral explicit damage model

Figure 2 gives the model response for a compressive and tensile test in plane stress
conditions. On the left side the 6, — € relation is plotted. The closure stress is set
to zero. On the right side the o; —¢€, relation is given.

Figure 3 shows the 6; —¢€,, curve for the same loading.
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The volume is negative before the stress peak, is equal to zero at the peak stress,
and becomes positive after the peak.

This curve corresponds to an apparent Poisson ratio at peak stress equal t0 0.5.
Figure 4 gives the evolution of damage variables versus €, strain.

Large dashed line correspond to Dc.

Continuous line refers to transverse tensile damage variables dy and dis (dp = dis).
Small dashed line is relative to longitudinal tensile damage variable d;.

During the compressive phase Dc increases and dy, dy, and dys are equal to D24,
During unloading all damage variables remain constant except dy; that increases
again when the longitudinal stress becomes positive.

Figure 5 shows the maximum tensile or compressive stress obtained in plane stress
conditions. Dashed line gives the initial damage threshold.
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Figure 4. Damage vaniables versus longitudinal ~ Figure 5. Maximum stress under
strain (tension or compression) plane stress conditions
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4 Conclusions

Explicit damage models has been developed to model behaviour of brittle
materials like concrete and rocks.

The first model is a two scalars damage model that describes crack closure effect
and permanent strains. The compressive damage variable is obtained from the
principal strains. The inelastic closure strain that defines the strain state between
tension and compression is also related to the compressive damage variable and
to the principal strains. Finally tensile damage variable can be obtaned directly
without any iterative process.

The second anisotropic and unilateral model is itself an extension of the previous
one. In this model, a second order tensor is used to described the anisotropic
material stiffness.  Inelastic anisotropic strains are also introduced in the
constitutive relations. Under meanly compressive loads volume change due to
damage effects can be controlled accurately. This general damage model, still
under development, will be completely finished when the difficult problem of
rotating load axes will be solved and when compacting effects under high confined
compressive stress will be included.
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