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Abstract

Failure in quasi-brittle materials finally leads to the instability of the
structure. A gradient damage model is used to properly regularise the
damage localisation process. Unstable structural behaviour of the
structure is defined as the loss of the positive definiteness of the system
tangent stiffness matrix. Because the damage process can be highly
dependent on the heterogeneity of the material, a first-order reliability
method for predicting the probability of structural instability is
introduced.

1 Introduction

Failure in quasi-brittle materials is characterised by a localisation of
deformation.  Several continuum models properly describing the
damage localisation in strain softening continua, such as non-local and

gradient models (Pijaudier-Cabot and Bazant 1987, de Borst et
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al. 1993) have been developed. These models introduce higher order
deformation-gradients, which can be seen as the outcome from a
homogenisation of micro-scale phenomena like microcrack initiation,
growth and coalescence. At a final stage of the damage process, the
structure will lose its load carrying capacity due to instability of the
structure. Unstable structural behaviour can be expressed as the loss of
the positive definiteness of the system tangent stiffness matrix.
However, the construction of a consistent system tangent stiffness
matrix for nonlocal damage models is quite complicated. A recent
gradient formulation of nonlocal damage (Peerlings et al. 1995) turns
out to be a considerable efficient method to calculate the consistent
system tangent matrix.

In recent years, the treatment of damage evolution and failure of a
structure in a stochastic framework stands as a most promising ap-
proach for studying the effects of the complex material heterogeneity
on a macroscopic scale (see e.g. Zhang and Kiureghian 1994, Car-
meliet and Hens 1994, Carmeliet and de Borst 1995). In this paper a
first-order, finite-element based reliability method for estimating the
probability of structural instability is presented. A main effort in the
application of the above reliability method is the calculation of the
gradient of the failure condition with respect to the random variables.
An example application on a one-dimensional continuum with a random
field elastic modulus demonstrates the methodology.

2 Gradient Damage model

In this section, we present the gradient formulation of the nonlocal
damage model as developed by Peerlings et al. (1995). The nonlocal
damage model as well as the gradient damage model start from the
classical isotropic elasticity-based damage theory:

¢=(1-D)Ce (1)

where C is the initial elasticity tensor of the virgin material, ¢ and e
are the stress and strain tensors and D the damage variable, which
grows from zero to one (complete loss of integrity). Damage growth is
determined by an evolution law D = F(¢®9), in which €*¢ is an equi-
valent strain measure defined by Mazars (1984). Damage growth is
possible if the damage loading function f = €°9 -K vanishes. The
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damage parameter K initially equals the damage threshold K and
during damage evolution equals the maximum value of €9 ever reached
during the loading history. The damage loading function f and the rate
of damage growth D have to satisfy the discrete Kuhn-Tucker con-
ditions: f<0, D=0, fD=0.

In the original nonlocal model (Pijaudier-Cabot and Bazant 1987) the
equivalent strain €°9 is replaced by a spatially averaged or non-local
equivalent strain value ¢, such that:

T(x) = Vl' LeeQ(xw)a(T)dV

T

@
a(r) = exp(—lfl2/212)

with 7 the separation vector, V, a normalising factor, e a squared
exponential weight function and / the so-called internal length scale.

In the gradient damage formulation of the nonlocal concept, the
integral equation of eq. 2 is replaced by the partial differential equa-
tion:

e - cV2e = ¢ (3)

with c=1*/4. Introducing CO-continuous quadratic interpolation func-
tions N for the displacement field and the C%continuous linear inter-
polation functions H for the nonlocal equivalent strain field, the
coupled incremental finite element formulation of the equilibrium
equation and differential equation (3) reads (Peerlings et al. 1995):

Kuu Kue du Fext + Fu (4)
Keu Kee de FE

with du and de the incremental nodal displacements and nodal nonlocal
equivalent strains between iteration steps k+/ and k respectively. The
partial matrices K, K, K., and K, are given by (Peerlings et
al. 1995):
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K, = LBT(lek)CBdV
Kue:—LBTCek [_3_2} Hav 5)
de k
K., = {(HTH+PTCP)dV
eq
K, = -LHT o¢ BdV
66 k

The matrices B and P contain the derivatives of the shape functions N
and H respectively. The internal forces F, , F; and the external force
F.y: are defined by:

T T =
F, = —LB 0, dV , F; = {/H edV - K., €, 6)

T
Fext = LB tk+IdS (7)

with t, , ; the boundary traction vector.

To demonstrate the essential features of the gradient damage model,
we solve the two-dimensional plane stress problem of a double edge -
notched direct tensile test (Hordijk 1991). The material data are:
Young’s modulus E = 40000 MPa, tensile strength f, = 3.7 MPa,
/=10mm, the initial damage threshold K; = f/E and an exponential
damage function D =1 —(KO/E) [(1-A)+ Aexp(B(E~KO))],
with A=0.95 and B=800 has been used. The specimen has a length of
125 mm, a width of 60 mm and notch depths of 5 mm. The specimen
is fixed at the bottom and prevented from rotating at the top. Fig. la
shows the load-displacement diagram, with the displacement measured
over a base of 35 mm. Fig. 1b shows the damage distribution at peak
loading and at final loading. The resemblence of the strain field with
that obtained by Sluys (1991) on a similar specimen, but subjected to
an impact load, is striking.
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Fig. 1. Load-displacement curve and damage distribution for tensile test

3 Stability analysis
A system is said to be in a state of stable equilibrium if the response on
a vanishingly small disturbance also remains vanishingly small. At a

state of equilibrium under dead load, the stability condition becomes for
a incrementally linear system (de Borst 1986):

a (K, +KDHa >0 ®)

for all kinematically admissible velocity vectors . The matrix K, is
the system tangent stiffness matrix, which for a gradient damage model
is given according to eq.4 by:

K=K, - K Kee Key ©)
The structure is said to be in a critical state of neutral equilibrium if:
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det (K, +K]) = det (K) = 0 (10)

which according to Vieta’s rule,
n
det (Ko) = JT M
i=1

with A; the eigenvalues of K, implies that at least one eigenvalue
vanishes. The vanishing of the minimal eigenvalue of K, in which the
rows and columns corresponding to fixed displacements have been
removed, is therefore identical to eq. 10.

To illustrate the condition of loss of structural stability, we consider
the example of an axially loaded tensile bar of linear softening material.
The length of the bar is L=100 mm, Young’s modulus E=20000 MPa,
the tensile strength f,=2 MPa, a softening modulus h=-0.01E and
/=4mm. To initiate and promote localisation of damage in the middle
of the specimen a 10% reduction of the cross section of the bar over a
length of 10 mm is assumed. Figure 2a shows the load-elongation
diagram for three meshes of 80, 160 and 320 elements. A snap-back
response is observed, which is due progressive damage growth in a
continuously decreasing damage zone. Figure 2b shows the evolution of
the minimal eigenvalue as function of the elongation. We see that in
this case the condition of loss of structural stability is met at the peak
load.
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Fig. 2. Load-elongation and minimal eigenvalue-elongation curve.
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4 Reliability analysis

Let X denote the basic random variables, representing the uncertainties
in the structure and its environment, and g a function of X such that
g(x)<0 denotes failure and g(x)>0 denotes the safe state of the
structure. The limit state function describing the structural failure mode
of instability is according to eq.10 :

g (X) = Ny (%) Y

with A, the minimal eigenvalue of the tangent matrix K.

It is convenient in reliability analysis to transform the variables X
into the standard normal space Y=Y(X), where elements of Y are
statistically independent normal variables. The limit state surface g(x) is
then mapped onto the failure surface G(y) in the standard normal space.
The probability of instability Pf is defined as:

P, = I f(x)dx = J d(y)dy (12)
g(X) =0 G(y) <0

with f{x) the probability density function of X, and ¢(y) the standard
normal density of Y.

To evaluate the probability integral, the first-order reliability method
is used. In this method, an approximation to the integral is obtained by
linearizing the failure surface G(y) at one or more design points yi*. If
there is only one significant design point, the first order approximation
of the probability is given by Pf = ®(-8), where ® is the standard
normal cumulative distribution and 8, commonly called the reliability
index, is the euclidian norm of y*. In the standard normal space, yi* is
the point on the limit state surface closest to the origin. This point is
found leg solving a constrained optimisation problem of minimising
F(y)=y'y subject to G(y)=0. Many algorithms exist for this problem
(see Liu and Der Kiureghian 1991). In this study, we will use the
HL-RF method, which is based on the following recursive formula:

) 1
19,6y 112

Vel (VG v, - G| Y,GT (14
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with Vy G(y,) the gradient vector of the limit state function. This
gradient vector can be efficiently calculated by (Haug et al. 1986):

VyG=V)\

v “*min

=72"(V,K{)Z (13)

with 7Z the normalized eigenvector corresponding to the eigenvalue
Amin, and V K¢ the gradient of the symmetric part of the tangent
matrix, which can easily be calculated by the finite element code.

As an example, we consider the axially loaded tensile bar of
figure 2. The elastic modulus E is assumed to vary randomly along the
bar and to be a homogeneous Gaussian random field, with mean 20000
MPa, standard deviation 1000 MPa, and an autocorrelation function
p=exp(-0.5 7%/d%), where 7 is the distance between any two points
along the bar. Using the midpoint method (Der Kiureghian and Ke
1988), the random field is represented by 40 random variables. The
tensile loading consists of a fixed elongation of 0.0095 mm. Table 1
gives the reliability index for three correlation parameters d. Fig. 3
shows the profiles of the elastic modulus at the most likely failure
point.
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Fig. 3. Profile of elastic modulus E at most likely failure point for
three correlation parameters d
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Table 1. Reliability index § as a function of the correlation
parameter d

d (mm) B ()
5 1.76
7.5 1.87
10 2.07

The analysis indicates that instability is sensitive to the elastic modulus
only in a zone surrounding the damage localisation zone. The width of
this zone of lower elastic modulus increases with increasing correlation
parameter d. We also observe that the structure is safer (higher
reliability index) for high values of the correlation parameter d.

5 Conclusion

A first-order finite element reliability method has been introduced for
the assessment of the probability of structural instability of strain
softening continua. The method takes advantage of the recent develop-
ment of a gradient damage model. Extensions to two-dimensional
problems and to other random variables, such as the initial damage
threshold, will be developed.
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