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Abstract

The decomposition of finite strain into its volumetric and devia-
toric parts has been generally thought to require a multiplicative
form. The present paper shows that this decomposition can be for-
mulated as additive, for any choice of finite strain tensor. Such
additive decomposition facilitates generalization of nonlinear triax-
ial small-strain constitutive models for concrete cracking or other
softening damage to finite strains. The decomposition is needed for
the modeling of impact, explosions and severe earthquake damage
in concrete structures, in which very large deviatoric deformations
can be produced under high confinement.

1 Introduction

Finite element analysis of certain fracture problems of concrete, such
as penetration of a missile into a concrete wall, requires a consti-
tutive model for distributed cracking in the fracture process zone
that is applicable at very large strains. The compressive volumetric
strain of concrete can of course be never very large because very
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high hydrostatic pressures are generated by even relatively modest
strains. For example, according to the tests of Bazant, Bishop and
Chang (1986), the volumetric strain of —6% causes a hydrostatic
pressure of about —300,000 psi (about —2,000 MPa). The devi-
atoric strains however, can be enormous under conditions of large
confining pressure without causing continuous fractures. This was
discovered already by Ira Woolson (1905), who cast concrete into a
thick steel tube, compressed the cylindrical specimen to about a half
of its initial length, which caused considerable bulging, and then,
after cutting and removing the steel tube, found the concrete to
retain its integrity. Under sufficiently high confining pressure, it is
certainly possible to achieve shear strains of the order of 100% while
the cracking in concrete remains distributed and discontinuous.

To analyze such problems, for example missile impact, explosive
events or deformations of concrete in highly confined members un-
der earthquake loading, one needs a nonlinear triaxial constitutive
law applicable at finite strains. Because of scarcity of test data
for very large strains and the near impossibility of achieving large
but uniform strains in concrete specimens at very large deforma-
tion, the constitutive relation for finite strain must be obtained by
generalizing the known small-strain constitutive equation and then
calibrating the additional parameters for large strains by compar-
isons with structural tests, in which the strain is non-uniform.

The typical feature of all kinds of constitutive models for con-
crete as well as other quasibrittle materials is that the strain is split
into its volumetric and deviatoric parts, for which the constitutive
behavior is treated separately. This split is additive. However,
it has been generally believed that, at finite strain, the decompo-
sition of deformation into its volumetric and deviatoric parts must
be multiplicative, such that the transformation tensor F = FpF'y,
were Fy Fp are the volumetric and deviatoric transformation ten-
sors (Flory, 1961; Sidoroff, 1974; Simo, 1988; Lubliner, 1990). The
multiplicative form of the volumetric-deviatoric split is an obsta-
cle to the generalization of existing constitutive models for dis-
tributed cracking or other softening damage in concrete. The pur-
pose of the present brief conference contribution is to report that
the volumetric-deviatoric split can be formulated as additive.

2  Finite strain analysis

As is well known (e.g., Bazant and Cedolin, 1991, chapter 11), there
are infinitely many possible finite strain measures to choose. The
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simplest choice is the Green-Lagrange finite strain tensor,
1 1,
€ij =3 (FriFij — i) = 5 (Ui + g+ Uk iU, j) (1)

where the numerical subscripts refer to Cartesian coordinates X; of
material points in their initial locations, u; = z; — X; = displace-
ments of the material points, z; = coordinates of material points in
the final deformed state, F};; = dx;/0X; = u;; + 6;; = components
of the transformation tensor F, and é;; = Kronecker delta. The
derivatives, denoted by a subscript preceded by a comma, are the
derivatives with respect to X;, e.g., u;; = Ou;/0X].

It is helpful to recall first the derivation of Eq. (1). Consider the
initial line segment dX; transforming to dz;. Tensor ¢;; is defined by
setting dapdzy — dXpd Xy = 2¢;;dX;dX;. Substituting z; = X + u;,
dzy = . ;dX; (where vy ; = Ox/0X;) one gets

QEijd}(vide = mk,idXixk,jde - d;X}chk

= [(Xp +we) ; (Xp +w) ; — 6i5] dXid X (2)

in which one may substitute X;; = 90X /0X; = &;. Since this
relation must hold for any dX;, one has 2e;; (6 + wr,i) (6r; + urj) —
0ij = Up; + upj + wp sk j, which y1e1ds Eq (1).

Let us now proceed similarly, imagining that a small material
element is deformed in two steps (Fig. 1) rather than one. In the
first step, the element is subjected to pure volumetric (isotropic)
expansion (i.e., same expansion in all directions), without any ro-
tation. Durmg this expansion, the point of initial coordinates X;
moves to a point of intermediate coordinates §; = X; + u, and line
segment dX; transforms to line segment d§;. In the second step,
the material element is transformed by deformation at no change
of volume and then is subjected to rigid body rotation (in which
the volume change is also Zero). In this transformation, the point
at coordinates &; moves to z; = X; + w;, and segment d¢; trans-
forms to dx;. Let gy be the engineering strain (or Blot strain) giv-
ing the relative volume change, that is, d§; = (14 ) dX;. Then
Vo+AV) Vo = (1+¢0)® = det F; = J, where J = Jacobian of
the transformation, Vy = initial volume of material element, and
AV = volume increment. So

= (det Fij)l/g -1 (Fij = 645 + usj) (3)

1023



Figure 1: Volume expansion of an elementary cube of material, its
subsequent deviatoric deformation, followed by rotation.

Denoting v} = z; — &;, and substituting d¢; = (1 4 £¢) dX;, we have

depdry = (8pi+uy;) d&; (8k; + ;) dE;

= (6 +ull; + ufy + ;) (1+ 20)” dXdX; (4)
and, since 0X;/0X; = 51‘;‘,
U’;,,J =T — é’z] (1 -+ 50) éij = Ujj — 5051']' (5)

Denoting also ep,; = ( ) (L4 g0)’ /2 =
(Hka]’J~2/3 - (Sl]) /2 we get

dapdry — dXpdXy = (1+&9)* dXpd X + 2ep,dNdX; — dXd X,

= (250 -+ 58) d)(/cdx‘{k + 25Di]‘ d-‘XVIX] (6)

Now, by definition, we must have dayda, — dX;d X, = 26;;dX;d X,
and so g;; = d;jey + Ep,; OT

1
€p;; = €ij — bijEy, v =0+ = (7)

[\D

in which é;;ey = ey, = volumetric finite strain tensor, ey = Green-
Lagrange volumetric finite strain, and ep,, = Green-Lagrange devi-
atoric finite strain tensor.
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Eq. (7) shows that an exact additive decomposition into volu-
metric and deviatoric finite strains is possible.

The preceding derivation relies only on first principles and calls
for only minimum familiarity with continuum mechanics. The same
result, however, can be obtained and generalized by a shorter argu-
ment relying on the polar decomposition theorem F = RU where

R = rotation tensor and U = (FTF>1/2 = right stretch tensor.
Consider a very general class of finite strain tensors, called the

Doyle-Ericksen tensors (e.g., Bazant and Cedolin, 1991, Sec. 11.1):
eM =m (U™ ~1) form#0, ™ =InU form=0 (8a,b)

where m is any real number; ) = Green-Lagrange tensor in Eq.
(1), e = Biot finite strain tensor, and €®) = logarithmic finite
strain tensor. Flory (1961) introduced the multiplicative decompo-
sition

F=FpFy (9)
(see also Simo, 1978; Sidoroff, 1974) where Fp and Fy are the
transformation tensors for the deviatoric and volumetric transfor-
mations; F'y = J/3I, Fp = J-Y/3F. The following tranformation
is now possible for m # O:

e = mt [(FTF)™? — 1] = m™ |(FEFp %)™ - 1}

= mt [(FgFD)m/? Jm/3 _ I} — e(gl) + e%ln) (10)
in which
e =m (I 1)1, ) =m (U - 1) I (11)

where Up = (F%F 9)1/2 = deviatoric right-stretch tensor. Simi-
larly, for m = 0:

€O =InVFTF = In\FLF 725 = £ 4 £ (12)

where
1
e — (g In J) I, &¥-—mU, (13)

So, the volumetric-deviatoric split of finite strain can be formulated
as additive for any choice of the finite strain measure. Note that

tensor s%,’") vanishes when the volume change is zero (or J = 1), and

tensor eg”) vanishes when the deformation is a pure isotropic expan-
sion (Fp = I). This implies that they represent the volumetric and
deviatoric deformations.
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3 Concluding remarks

It may be concluded that, for any choice of finite strain tensor, the
volumetric-deviatoric decomposition can be formulated as additive.
This facilitates generalization of the existing nonlinear triaxial con-
stitutive models for concrete cracking and softening damage to finite
strains.

An application to the microplane model for concrete will be given
in Bazant et al. (1995).

Acknowledgement

Partial financial support under Contract No. DACA39-94-C-0025
between the U.S. Army Engineer Waterways Experiment Station,
Vicksburg, Mississippi, and Northwestern University is gratefully
acknowledged. Additional support for applications to the analysis of
cracking has been received from the ACBM Center at Northwestern
University.

References

Bazant, Z.P., Bishop, F.C., and Chang, T.-P. (1986) Confined com-
pression tests of cement paste and concrete up to 300 ksi. ACI
Materials Journal, 33 (4), 553-560.

Bazant, Z.P., and Cedolin, L. (1991) Stability of Structures:
Elastic, Inelastic, Fracture and Damage Theories. Oxford
University Press, New York (Chapter 11).

Bazant, Z.P., Xiang, Y., Prat, P.C., Adley, M.D., and Akers, S.A.
(1995) Microplane model for concrete. ASCE Journal of En-
gineering Mechanics, 121, in press.

Flory, T.J. (1961) Thermodynamic relations for high elastic mate-
rials. Trans., Faraday Soc., 57, 829-838.

Lubliner, J. (1990) Plasticity theory. Macmillan Publ. Co., New
York (sec. 8.2).

Sidoroff, F. (1974) Un modele viscoélastique non linéaire avec con-
figuration intermédiare. Journal de Mécanique, 13, 679-713.

Simo, J.C. (1988) A framework for finite strain elastoplasticity based
on maximum plastic dissipation and the multiplicative decompo-
sition. Computer Methods in Appl. Mech. and Engrg.,
66, 199-219 and 68, 1-31.

Woolson, I.H. (1905) Some remarkable tests indicating ‘flow’ of con-
crete under pressure. Engineering News, 54 (No. 18), p. 459.

1026




