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deviatoric deformation, followed by rotation. 

substituting d~i == (1 + Eo) i, we 

+ 

E Dij == ( uzj + u'J,i + u'k/u'L) ( 1 + Eo )
2 

/2 == 
- bij) /2 we get 

(5) 

(2Eo + E6) d.Xkd.Xk + 2EDijdX;Xj (6) 

we have d~rkdxk - dXkdXk == 2Eijd)(dXj, 
EDij or 

EDij = Eij - (7) 

== volumetric finite strain tensor, Ev == Green­
strain, and E Dij == Green-Lagrange devi-
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Eq. (7) shows that an exact additive decomposition into volu­
metric and deviatoric finite strains is possible. 

The preceding derivation relies only on first principles and calls 
for only minimum familiarity with continuum rnechanics. The same 
result, however, can be obtained and generalized by a shorter argu­
ment relying on the polar decomposition theorem == RU where 

R == rotation tensor and U == (FT F) 112 
== right stretch tensor. 

Consider a very general class of finite strain tensors, called the 
Doyle-Ericksen tensors (e.g., Bazant and Cedolin, 1991, Sec. 11.1): 

e(m) == m- 1 (Um - I) form -/= 0, e;(m) == ln U for m == 0 (Sa, b) 

where m is any real number; e(2) == Green-Lagrange tensor in Eq. 
(1), e(l) == Biot finite strain tensor, and e(O) == logarithmic finite 
strain tensor. Flory ( 1961) introduced the multiplicative decompo­
sition 

F == FDFv (9) 
(see also Simo, 1978; Sidoroff, 1974) where FD and Fv are the 
transformation tensors for the deviatoric and volumetric transfor­
mations; Fv == J 113 I, FD == J- 113 F. The following tranformation 
is now possible for m -/= 0: 

e(m) = m-1 [(FTF)"'/2 - 1] = m-1 [(Fi_;FD.]213)"'/2 - l] 
-1 [(FTF )m/2 Jmf3 I] _ (m) + (m) m D D - - eD ev 

in which 

(10) 

e~n) == m-1 (Jm/3 -1) I, e~i) == m-1 (U7]- I) pn/3 (11) 

1/2 
where U D == ( F'£F D) == deviatoric right-stretch tensor. Simi-
larly, for m == 0: 

e(o) = ln J pT F == ln / F'fyF DJ2/3 == e~) + e~~) (12) 

where 

e~l = G ln .J) 1, e~) = ln U D (13) 

So, the volumetric-deviatoric split of finite strain can be formulated 
as additive for any choice of the finite strain measure. Note that 
tensor er) vanishes when the volume change is zero (or J == 1 ), and 
tensor eY;) vanishes when the deformation is a pure isotropic expan­
sion (FD == I). This implies that they represent the volumetric and 
deviatoric deformations. 
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3 Concluding remarks 

may be concluded for any choice of finite strain tensor, the 
volumetric-deviatoric decomposition can be formulated as additive. 
This facilitates generalization of the existing nonlinear triaxial con­
stitutive models for concrete cracking and softening damage to finite 
strains. 

An application to the microplane model for concrete will be given 
Bazant al. ( 1995). 
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