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Abstract 
this work, the crack propagation in concrete under uniaxial compression 

is described using a mathematical model based on damage mechanics. The 
pre-existing crack surfaces and fracture surface energies of concrete are 
calculated by means of the proposed model. The model is applied to the 
available test results. It is seen that there is good agreement between 
calculated values and experimental data. 

1 Introduction 

The mechanical behaviour of damaged materials due to existence, growth 
and nucleation of microdefects such as microcracks and microvoids have 
been the subject of many investigations. The presence of microcracks and 
the development of microcracking are the main cause of the short-term 
nonlinear behaviour of concrete. Initiation of bond cracks and joining of 
mortar cracks to form continuous crack path prior to ultimate strength has 
been widely investigated (Bazant and Mazars 1989, Ju et al. 1990). 

Recently, in order to obtain mathematical modeling of damage 
concrete, much research has been accomplished. However, adequate 
attention has not been given to determine how damage parameters will be 
obtained in concrete. Furthermore, quantitative measurements are needed 

1037 



for mathematical modeling of concrete and a better understanding of 
fracture mechanism in the material. The main objective of this work is to 
obtain some fracture parameters of a quasi-brittle material such as concrete 
using a mathematical model based on damage mechanics. 

2 energy balance approach 

Consider a solid body subjected to certain external loads as shown Fig. 
1. cracks in the body grow and propagate under the loads. In most 
general case, the thermodynamic equilibrium equation of the body can be 

as 

dW dT (1) = + + 
dt dt dt dt 

where t is the time, U is the work done by the external load, W is the 
reversible (elastic) component of the stored energy, T is the kinetic energy 

o2 

Fig.1. A solid body subjected to external loads 

and is the sum of all the irreversible energies such as fracture surface 
free energy or fracture energy, plastic work and viscous dissipation 
(Erdogan 1968). Since the total dissipative energy is created near a crack 
(Knott 1973), the time differential of the total irreversible energies dD/dt 
can be written as 

dW dS 

dS dt 
= 

dA 

dA dt 

dA 
= y-

dt 
(2) 

where S (t) = S 
0 

+A (t) in which, S 
0 

is the total surface area of the body 

excluding crack surface and A(t) is the crack surface at a certain time, 

dD / dA = y is the amount of energy required to create a unit area of 
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fracture surface (fracture surface energy or strain energy release rate), and 
dA/dt is the rate of fracture surface energy (Erdogan 1968). 

If the cracks do not propagate when the external loads are kept 

constant, the system is quasistatic or quasistable and hence dT/ dt = 0. 
this case, Eq. l may be written as follows 

dU dA dW dA dD dA 
= + 

dA dt dA dt dA dt 

Then, the following equation can be expressed 

d(U-W) = y 
dA 

and from the integration of Eq.4 

A U-W = yA (--1) 
o A 

0 

(3) 

(4) 

(5) 

can be derived. In this equation, A
0 

is the area of crack surface the 

solid when U = W = 0. The close neighbourhood of the cracks can be 

accepted as a stress-free region (Knott 1973). In Fig.2, v0 is the volume 

which is able to cary load and V is the total volume of the solid body, 

V-v 
0 

and V-v are the stress-free volumes before and after loading 
respectively. 

before loading after loo.ding 

Fig.2. A solid body with flaws before and after loading 

Let a
0 

and a the average of the surface area and h
0 

and h the 

corresponding stress-free volume of n cracks of the body before and after 
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loading respectively, and k be any constant. Then, the following 
equations can be expressed: 

V-v=nh, 
(6) 

a 3
'
2=kh, na!12 =knh

0 
=k(V-v 

0
), na 3

'
2 =knh=k(V-v) 

From this set of equation we have the following expression 

(7) 

3 Damage mechanics approach 

By definition damage corresponds to irreversible degredation of the 
cohesion of the material under internal and/or external straining. This may 
lead to failure of a representative volume element. In damage mechanics, 

strength of a loaded structure is determined by the deterioration of the 
caused by loading. This deterioration or damage may be described 

terms of continuous defect field. 
us consider the stress-strain curve in concrete under uniaxial 

compressive loading. If the total volume of the concrete specimen is V, 
the work done by external forces can be written as 

€ 

= [J a(E)dE]V (8) 

0 

where u and E are uniaxial stress and strain respectively. The reversible 
(elastic) work is approximately 

1 cr2 

= v 
2 E 

E is the modulus of elasticity. From Eqs.5, 8 and 9 we have 

€ 

J O(E)dE 
1 o2 

2 E 
0 
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If we take differential of both sides in Eq.10, then we have 

E 
= p !!_ ( !±__ - 1) 

dE a
0 

aa' a -

where a =A/V, a
0 

=Aof V, /3 =a
0 

y. 

Under uniaxial state of stress, the damage can be characterized by a 

scalar parameter, D (Kachanov 1986), which denotes the concentration of 
microdefects existing in a representative volume element of the material. 

If D = 0, the material has no deterioration which is reference state. 

D = 1, this indicates the failure of a representative element 
the material. 

Thus, from Fig.2, D can be written as 

D = ( v 
0 
-v )/v 

0 
(12) 

which is equal to zero when v = v 
0 

and equal to 1 when v 0. Hence, 

continuous damage function lf! defined as 

1 , E =0 
v 

- ' O<E<E 
V m 

0 

0 E =E 
' m 

(13) 

where Em is the maximum strain, 111 is a decreasing function, as a result 

111' < 0. From Eq. 7, a/ a 
0 

can be obtained as 

v v 2/3 v 2/3 
- - - q-- ( r a Vo Vo v - q-w 0 

= - --
ao £_1 q-1 q-1 

Vo 

where q =VJ v 
0 

> 1 which is a constant. In this case the following equation 
can be expressed 

2 1 
(15) 

3 (q-1)2/3(q-w)l/3 dE 
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Substitution 
obtained as 

11, kinetic equation of damage can be 

w' = dw = 
de 

13 aa' -K(q-w) 1 (a--) 
E 

(16) 

where K = (3/2)(q-1)2
'
3 /P. From Eq.16, the following equation may be 

given 

y = ( 

In {Y=( 

w' )3 
a a' a---

(a-a 

line which has a 

this line from 

q, and from 

(17) 

) 3 , lJ1 } coordinate axes, Eq.17 represents a straight 

of K 3 and intercepts w axes at q. If we can obtain 

results, we can then find the constant and 

the surface area of the pre-existing cracks, fracture 

surface energy y and other material parameters of the concrete. 

4 Determination parameters 

The experimental stress-normalized strain curve and variation of Poisson 
ratio with normalized strain are taken from the previous studies (Oktar 
1977 and Ta~demir 1982), and given in Figs.3 and 4, respectively. 

The continuous damage function w given in the Eq.17 can not be 
evaluated experimentally as it is expressed in Eq.13, but its change is 

same direction with the variation of Poisson's ratio, which can be 
evaluated experimentally. However, the right hand side of Eq.13 can be 

taken as the ratio ( v m - v )/ ( v m - v). Thus, we obtain 

v -v m v 
= = w (18) 

where v m and v 
0 

are Poisson's ratios at D=l and D=O, respectively. 

this case the relation between lJ1 and E/ Em can be easily obtained from the 

experimental results given in Fig.4. 
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Fig.3. Stress versus normalized strain curve 
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Fig.4. Poisson's ratio versus normalized strain curve 

Experimental data given in Figs.3 and 5 are also used Fig.6 for both 
and right sides of Eq.17. As seen Fig.6, there is very good 

relation between Y and w, and correlation coefficient is 0.99. 

The slope of the straight line (K 3
) given Fig.6 is 1445.2x 

At the w intercept, q is 1.036. Using these values in the 

= 3/2 (q-1)213 / p, p can be calculated as 1.47 x 10-3
. Considering 

equation of q = V /v
0

, v
0 

can be found as 5.lxl06mm3
. Thus, the volume 

of crack neighbourhood in the unit volume H
0 

=(V -v
0
)/V will be 0.036 

mm3 /mm3
. Let n be the number of cracks in the unit volume of concrete, 

then the average value of the close neighbourhood of the cracks can be 
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Fig.5. The variation of damage function with respect to s/cm 
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results given by Ta~demir (1982) 

expressed as nh
0 

=H
0 

= 0.036 mm3/mm3
. For a certain crack, if we assume 

average form of the cracks as a penny shaped and consequently their 

neighbourhoods as a sphere, then we obtain h
0 

= (4/3) n r 3
, where r is the 

radius of the sphere. Using Eq.6, aJ2 becomes n r 2
, as a result 

aJ2=(h
0 

/0.75)213
. On the other hand, it is possible to write the following 

2. n l/3. 

can be 

)
213 = n 213 (hJ0.15 )213 = n 213 . hof2. The total crack area in unit 

a
0 

=na
0

• Hence, we obtaina
0 

=n a
0 

= 

this equation, for n=l, a
0 

=0.0264mm 2/mm 3 

~ is described as ~ =a 
0 
y , using corresponding 
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values given above we then find y =55.7 N/m. It is also possible to find 

the other values of a
0 

and y as given in Table 1. For lightweight 
concrete, according to the experimental data reported by Ta~demir 1982, 

as shown in Table 1, K 3 and q take the values of 3585xl03 and 1.057, 
respectively. As calculated above, the values obtained are shown in the 
same table. The evaluated values using the experimental data obtained by 
Oktar (1977) are also given in Table 1. It is seen that the fracture surface 
energies decrease significantly for low number of initial crack surfaces, 
however, the decrease is slight for high numbers. 

Table 1 Fracture surface energies calculated in this work 

for n=l for n=2 
Source K3 
of data q 

x1Q3 ao y ao y 

mm 2 N mm 2 N 
- --- --

mm 3 m 
mm 3 m 

Normal 
concrete, 1445.2 1.036 0.0264 55.7 0.0333 44.0 
Ta~demir 

(1982) 

Lightweight 
concrete, 3584.8 1.057 0.0347 41.8 0.0437 33.2 
Ta~demir 

(1982) 

Normal 2187.9 1.049 0.0316 49.3 0.0400 38.7 
concrete, 
Oktar (1977) 1849.0 1.046 0.0300 51.5 0.0375 41.1 

The results obtained in this work were compared with the experimental 
data available in concrete literature. As seen in Table 1, the fracture 
surface energies calculated in this work can be comparable with those of 
others (Swamy 1983). 
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this paper, a mathematical model based on damage mechanics is 
presented and a combined theoretical-experimental approach is developed 
to determine some parameters of concrete. Uniaxial compression tests are 
used to asses the fracture surface energies of both normal and lightweight 
concretes. It can be concluded that obtaining Poisson's ratio as a damage 
parameter, comparable fracture surface energies with available 
experimental ones in the literature were found. 
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