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Abstract 
Instead of using of fracture mechanics, which is very often employed 
the analysis of cracked structural components, we present here ~ .... ,L···~· 
technique based on the equivalence between 'l crack, its process zone 
a distribution of damage. equivalent damage zone is an 
approximation of the distribution of damage around the existing crack, 
and it is based on the analysis of localisation with a non local ...................... Jo.,.., 

model. The implementation of this distribution in a finite ...., .... ..., ... ., .................. . 
provides the description of the field of damage 
the crack. After the validation method on a wedge 
numerical calculations are presented which show a good 
the maximum residual carrying capacity of three 
damaged beams, made of concrete. 

1 Introduction 

The evaluation of the residual carrying capacity of 
components is a problem of growing importance for civil .., .... ,""" .... , . ....,.., ..... ,.A.jo., 

structures, which are, in particular, subjected to different 
attacks leading to damage and cracks. We assume here that 
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cartography of these existing cracks in the structure is the input data and 
concentrate on the numerical evaluation of the carrying capacity within 

finite element method. 
Crack propagation in fracture mechanics (see e.g. Elices and Planas 

1989) requires the implementation of special finite elements with 
adequate shape functions that represent the singular stress field at the 
crack tip (Ingraffea 1990, Reich et al. 1994 ). This is needed in order to 
predict correctly crack bifurcation and propagation conditions. 
Constitutive modelling, in the continuum sense, is a second possibility. 

behaviour of the material is described with a constitutive relation 
aimed at representing the influence of micro cracking on the stress-strain 
response of the material. The goal of these continuum models of fracture 
is to combine the inception of cracking and the crack propagation into a 
single model. For example, smeared cracks models (Rots, 1988), 
microplane models (Bazant and Ozbolt, 1990) or continuous damage 
models (Mazars and Pijaudier-Cabot, 1989) can be used. Usually, these 
models exhibit strain softening and it is necessary to enrich the 
continuum description with an internal length in order to obtain 
physically meaningful results, and in particular fracture with dissipation 
of energy. Compared to the fracture mechanics approach, continuum 
modelling allows the description and the propagation of the crack 
without any modifications of the finite element mesh, and without any 
additional criterion such as crack orientation conditions. It is done, a 

with a greater complexity because of the distribution of damage 
equivalent to an existing crack which is difficult to determine. An 
analytical model is developed for this purpose hereafter. 

2 Damage model 

this analysis we use the isotropic scalar non local damage model (see 
Saouridis and Mazars, 1992). The constitutive relations are: 

(1) 

aij and £ij are components of the stress and strain tensors 
respectively, cijkl are the initial stiffness moduli, and D is the damage 
coefficient. The material is initially isotropic, with its Young's modulus 

and Poisson's ratio (v ). Damage is a function of the non local 
effective strain defined as: 

(2) 
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and 

e(x) = -
1-J lfl(x- s)e(s)ds with~ (x) = J lfl(x- s)ds (3) 

Vr(X)v v 

where (.)+ is the Macauley bracket and Ei are the principal strains. V is 

the volume of the structure, Vr(x) is the representative volume at point 
x, and \Jf(X -s) is the weight function: 

\Jf(X-S) = exp[llx-slr l 
212 

c 

(4) 

le is the internal length of the non local continuum. The evolution of 
damage is specified according to following conditions: 

F(£)=£-K 

and 

if F(£) = 0 and F(£) = 0 then D = f (£) 

if F(E) < 0 or if F(£) = 0 and F(£) < 0 then D = 0 

(5) 

The damage variable D results from a combination of two types of 

damage: Dt for tension and De for compression: 

(6) 

(7) 

where the constants Ac, Be, At, Bt are material parameters and 

( 
( ) J

~ 
3 E. £. 

a ="" 11 1 + 
t ."-' -2 ' 

i=l E ( 
( ) J

~ 
3 E. £. 

ac = L Cl -21 + 
i=l £ 

(8) 

(9) 

£ti is the positive strain due to positive stresses and Eci is the positive 
strain due to negative stresses (Poisson's effect). The purpose of 
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exponent ~ is to reduce the effect of damage on the response of the 
material shear compared to tension. 

3 Distribution of damage around an existing crack 

The existing crack, created in the structure by unknown loads, is to be 
replaced by an equivalent damage zone (Fig. 1 ). 

local coordinate system x tangent to the crack path 

Crack Damaged Zone 

Figure 1: Distribution of damage equivalent to a crack. 

It is difficult to derive an exact solution to this problem, because of the 
unknown loading history: the actual state of stress is not necessarily the 
one that has caused damage in the body. The problem is restricted here 
to the distribution of damage corresponding to a crack, assumed to have 
been created under mode I conditions. We use an approximation which is 
entirely analytical, and based on a bifurcation analysis (Pijaudier-Cabot 
and Benallal, 1993). The rate constitutive relations are: 

&(x) = (1- )c . C:e0 atf ( ),.::.( )d :e----= VI s-x es s 
vr (x) ae v 

(10) 

where (E0 ,D0 ) is the initial, homogeneous, state of deformation and 
damage about which the rate constitutive relations are expressed. After 
substitution of these relations into the equations of equilibrium, the 
analysis of localisation and bifurcation in a non local continuum has 
shown that the solution of this problem is harmonic, and its expression in 
the local coordinate system of the crack is: 

u(y) = Aexp(-iro y) (11) 

where ro is angular frequency of the solution. This expression does 
not depend on the local coordinate x, which means that the damage zone 
is assumed to be infinite and that the solution is purely one dimensional. 
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This angular frequency is given by the equilibrium condition which 
involves the Fourier transform of the weight function 'ti( m): 

(1- Do) = -( l ) 
df VI m, c 

Eoyy a
Eo 

The angular frequency is also a function of the initial state 
and damage. The principle of this approximation is to let the 

2) 

strain tend to infinity and to retain the angular frequency which 
corresponds to this case only. If the angular frequency tends to infinity, 
a threshold is set corresponding to the definition of a maximum strain at 
which failure is considered to occur. According to this assumption 
maximum angular frequency corresponding to the minimum possible 
value of the width of the damage zone along the axis y of the local 
coordinate system is selected. The distribution of damage is obtained by 
substituting the harmonic solution in the equations of evolution (5-9), 
integrating the rate of damage, and rescaling the integral so that damage 
is equal to one along the crack path. We obtain in the coordinate system 
of the crack (Fig. 1): 

+oo 

J VJ(y- s)17(s)ds 
D(y) = _-oo_+oo ___ _ 

J VJ(s)17(s)ds 
3) 

with 117(y)=cos(mmaxY) ifyE[
2

-1r ,
2 

1f: ] andD(y)~O 
mmax mmax 

17(y) = 0 elswhere 

At the crack tip, the distribution is circular and variable y is replaced 
by the radius r defining the distance from the considered point to 
of the crack. The accuracy of this approximation has been checked 
past by computing the fracture energy resulting from this distribution 
damage and comparing to the fracture energy derived from size ~~·~~L 
tests (Mazars et al. 1994 ). 

4 Implementation and validation of the method 

From a computational point of view, an existing crack in the structure 
modelled as a set of broken lines. Once this set has been given, a 
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processor computes directly the initial distribution of damage at each 
gauss point using equation (13) along with the new threshold of damage. 
According to this method, damage is not equal to one at a gauss point, 
except if this point is located exactly on the crack line. Therefore, an 
element crossed by the crack has still a residual strength which seems to 
be non realistic. In order to circumvent this problem, we constrain 
damage to be equal to one in all the elements crossed by the crack line. 
This constraint disregard locally the analytical distribution of damage, 
and allows more accurate predictions. 

4.1 Wedge splitting test 
This first test is purely numerical. The structure is a plane stress model 
of a wedge splitting specimen made of plain concrete, where the crack 
mouth opening displacement is controlled (Fig. 2). The material 
parameters and the wave length of the damage zone are: 

K"o = 1 10-4 , E = 32000 MPa, v = 0.2, At= 1., Bt = 1000, Ac= 1.4, 

Bc = 1500, f3=1., le = lcm, w2
TC = 3.8/c 

max 

1---1-(f,u) _ - (f,u)-1---1 
1----1------- -·- - --·-· ·---1-----1 
1----1----- -- - - - ---·--1----1 1----1-------------· ·--l·----1 1----1--------- ---· ---1----1 
1----1---· ---·- ·- ·- -·-- ---··· ·--l·----1 
1----1-------------1----1 
1----1------------1---1----l t-----1---- ---·- ··--· - ·-· .. -·- --·-···· -------'1----1 
1----1---I·-·- - - - ---··-··· -----1----1 
1----1-----· - - -· -·-··· ·---··· ··----1----1 -----1---- ---- -·· - ... ·- ..... ·-······· ···-··-··- -----1 
1-----1---·---· ··-· ·-· - -- ·- ............. -·---·- --·---1 
1----1--------------1,---~ 

1----1------ -·- - --- -- -----1----l 
1----1----- ···-· - - - --- ----·- ··---·--1----1 t-----1--- -- ·--· ... -· - - --·--·- ·----1----1 ·----- --···- ---···· -· -·--·--·····-·· ··-·--·-·----· 

Figure 2: Wedge splitting test : mesh and boundary conditions. 

We compute first the load-notch opening displacement curve starting 
from an initial state of zero damage. Crack propagation follows a 
straight line. In the course of calculation, several equivalent crack 
lengths corresponding to different openings of the notch are selected. In 
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order to back calculate the crack length, the material is assumed to be 
completely cracked when D>0.999. 

6. 
F damaged 

5. G 
' 

predicted 
' without initial crack 

4. 
predicted 

' ',~with initial crack 

3. ' 

2. 

i. 

0 

2. 4. 6. 8. 10. i2. 14. 16. 
Crack length (mm) 

Figure 3: Wedge splitting test : residual load vs. crack length. 

Once this first calculation has been performed and for each selected 
crack length, we use the distribution of damage according to our 
method, and start a new computation up to failure. Figure 3 shows the 
plot of the residual strength versus the crack length. The agreement 
between the computation starting from the uncracked plate and all the 
computations which started from a cracked plate with different crack 
lengths is quite good for this example which is purely numerical. 

4.2 Three point bending of a fibre reinforced concrete (FRC) 
beam 

The greater difficulty of this problem is to find a good equivalence 
between the existing crack and the damage zone: when damage is locally 
equal to one at a material point of the specimen, the stress carrying 
capacity of the material is still non zero because the fibres are bridging 
the two crack faces. An intermediate model can be devised in which the 
contribution of the concrete and the fibres are clearly distinguished: the 
strains in concrete and in the fibres are the same and the total stress 
applied on the composite material is expressed as: 
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(14) 

a c is stress carried by the concrete, af the stress carried by 
fibres, and c is the mechanical concentration of fibres. This 

coefficient is related of the proportion of fibres in the concrete and must 
from the response of the FRC (La Borderie, 1991). The FRC 

we have used, is made of a standard concrete (30 MPa in compression) 
hooked fibres 08/60. The percentage of fibres is 1.2% of the 

weight of cement. The different material constants have been fitted from 
uniaxial tests: 

Concrete 

= 0. 7 10-4
, E = 20000 MPa, v = 0.2, Ac= 1.2, Be= 2381, 

At= 0.95, Bt = 10000, le= 60mm 

Fibres and interface 

= 210000 MPa, a max= 85 MPa, softening modulus= -200 MPa 

concentration coefficient c is equal to 2 % which is higher than the 
percentage of fibres in FRC. 

Bending tests where the load and support locations are shifted after the 
onset of an initial crack (Fig. 4) were performed in order to determine 
the residual strength of these cracked beams (La Borderie et al., 1994) 
and check the present model. 

first loading 

1000 

Figure 4: Test on pre-damaged specimens. 

For the sake of simplicity in the finite element implementation, the 
contributions of fibres and of concrete is separated at the element level. 

elements connecting each couple of adjacent nodes represent the 
contribution of the fibres. The area of the bar elements is computed in 
order to respect exactly the value of the mechanical concentration of 

Figure 5 shows the experiment versus the numerical prediction 
corresponding to a shift of d= 150 mm and an initial crack length of 150 
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mm (3/4 of the beam depth). The numerical results give a good 
prediction of the maximum carrying capacity. The error is of the order 
of 20 percent. But, note that its impossible to obtain the experimental 
stiffness of the pre-damaged beams, because we have note represented, 

numerical model, the distribution of the plastic strain in the fibres 
within the damage zone. 
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Figure 5 :Test on pre-damaged specimens: load vs. displacement under 
the 

5 Closure 

The prediction of the response of structural components can be 
performed using continuum-based models. The equivalence between the 
crack, its process zone and the distribution of damage, is based on 
analysis of strain and damage localisation. The distribution of damage 
equivalent to a mode I crack is used this paper. The implementation of 
this method leads to a good agreement for plain concrete structures. The 
method has been extended to fibre reinforced concrete. 

The method proposed here is restricted to existing cracks created under 
mode I conditions, which seems to be a fairly wide range of applications. 

future studies, it should be necessary to check the method for mixed 
mode crack propagation or on cases were crack branching is observed. 
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