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Abstract 
A gradient-dependent plasticity theory is applied in finite element solutions 
of static strain localisation problems. Assuming weak satisfaction 
constitutive equations, a layered beam element with a mixed character is 
developed. The plastic strain field is discretized in addition of the 
displacement field. Some examples are carried out to verify 
performance of both the element and the algorithm. 

1 Introduction 

Structural concrete exhibits strain softening due to non-homogeneous 
deformations. Softening behaviour is a precursor to failure and involves 
localisation of deformation. When it is taken into account in standard 
continuum theories, the strain softening phenomenon leads to ill-posed 
boundary value problems, since the governing equations lose ellipticity. 
Thereafter, numerical simulations suffer from extreme mesh dependence. 
The localisation zone is completely determined by the discretization and no 
convergence to unique solution is obtained. 

To remedy this improper behaviour, the standard continuum model must 
be enriched by including either extra or higher order terms (Bazant and 
Pijaudier-Cabot,1988, de Borst and Muhlhaus,1991 and 1992, Sluys,1992). 
These terms are used as localisation limiter and allow to keep the problem 
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Application of Green's theorem to last term on 
equation ( 6) yields 

f g8A.V 2 (dA-)dV = g(VodA,)T (VdA.)dV + f 
V V S1., 

with u"- the outward normal at elasto-plastic U'V\.-U.l.UUJ. SA.. 

equation (7) it follows the non-standard boundary ...,'-J .... '-4-.. .., .. 'VJLA...., that 
multiplier field 

()dA, = 0 or (V dA,) TUA = 0 . 

3 Discretization 

The displacement and strain field eqs. (5) and (6) can be discretized 
according to the normal finite element procedure 

u =Na e = 
where N contains interpolation polynomials, B= LN 
displacement vector. On the other C Lcontinuous 
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.. ,Hn) are used for the interpolation of the plastic multiplier since 
second derivatives of this variable appear in the weak form of the 

consistency condition (6). Introducing a vector P = (V2H1'···, V2Hn), the 

".llnl•".l1"' 1 -:in of A, can be computed properly. We obtain 

\72 /i., =PTA (10) 
denotes a vector of nodal degrees-of freedom of the A. field. 

Substitution of the above identities in eqs. ( 5) and ( 6) and requiring 
these equations hold for any admissible variation 8a and 8A , we 

obtain the following set of algebraic equations : 

~:J [:J=[\:fi] 1) 

elastic stiffuess matrix Kaa, the external force vector fe and the 

JI.A.JI.,,,, ...... _ ... _ ........ force vector fi defined conventionally, and the off-diagonal matrix 
, the gradient-dependent matrix K AA , the vector fA, of non-standard 

residual forces which emerges from the inexact fulfilment of the yield 
condition defined in (de Borst and Muhlhaus, 1992). The tangent stiffuess 
matrix in the set (11) is non-symmetric due to gradient terms the 
submatrix KA.A.. If the derivation in eq. (8) is considered and assuming 

appropriate boundary conditions are satisfied, KA.A. can be 

symmetrized. However, the symmetrization does not seem to offer 
practical advantage, it rather results in a lack of convergence (Meftah, 1994 
and 1995). For the beam element considered in this paper only a 
symmetric operator is adopted to validate the layered approach. The 
implementation of the non-symmetric solver in the finite element code is 

stage and will make possible to use a non-symmetric operator 
providing better results. 

above set of equations governs the element behaviour during plastic 
According to Kuhn-Tucker conditions, 

~ ~ 0 , F ~ 0 , = 0, (12) 
eq. (11) can be extended to the elastic part the body. In the elastic 
elements we set K Mi = 0 since the gradient vector n=O. Then the second 

the set (1 separates from the first one giving the following 
o.rn•i.-...-.,..,...,, in dA 

KA.A,dA = fA.. 3) 
elastic state we also set the residual forces fA, to zero. We obtain 
desired solution the global matrix K 'AA is non singular after 

element assembly and introduction of the boundary conditions for the A 
degrees-of-freedom (Pamin,1993). It is therefore not necessary to set the 
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value of the hardening modulus h equal to large number to 

constrain the value of A, to zero for elastic elements (de Borst 
Muhlhaus, 1992). In this paper h for elastic elements is taken equal to 
Young's modulus 

4 Application to beams theory 

As first application, we focus our attention on Navier-Bernoulli beam 
theory (Batoz and Dhatt, 1990). Therefore, the stress and strain tensors 
reduce to their axial components O' = (ox) and £ = ( £ x) , respectively. 
Each cross section is devided into n layers (fig. I). The nodal displacement 
and force vectors of the centroidal axis are a = , vi, ei, uj 

f = (Ni, Ti, Mi, N j, Tj, M j) where u=axial displacement, v=transverse 

deflection, 9=rotation of cross section, and subscripts i and j to 
adjacent cross sections i and j at the ends of the element. 

y y 

~----3---~ Concrete la er • 

layer k ,A\) 

(j) x 
................................................................. ~ 

centroidal axis v, 

Figure I Layered finite element 

The hypothesis of plane cross sections remain plane and normal 
centroidal axis allows to determine the displacement the axial direction 
at any point x,y (in cartesian coordinates x,y) as 
u(x,y) = u(x,0)-yfJv(x,0)/fJx, and strain as Ex(x,y) = fJu(x,y)/fJx. 
We use finite elements with a linear variation of u and a 
v. Therefore, the displacement field u on each layer is related only 
mid-axis displacement components a by mean of the appropriate 
interpolation polynomials. 
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da f 

] 

[K~A] dAn ff 

(14) 

where the subscript k indicates that quantities are computed with respect of 
considered layer. For the details of these derivations the reader is 

referred to 1994). 

5 

we ourselves to one-dimensional plastic flow problems, a 
second order gradient yield function can summarised by the set of 
equations 

F=o -o(EP,d 2EP/dx2
) (15) 

E P = A = K . When the maximum tensile strength O'y is attained 
softening occurs with h constant. Also an internal length scale l which 
governs the localisation band width is introduced in the model (de Borst 

and Muhlhaus,1992), giving the gradient constant g = -hl2
. 
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It is emphasised that the presence of gradient terms in the yield 
algorithmic essence of gradient regularisation. The case of ...... ....,~ ........... 

contribution of this terms occurs on the elasto-plastic boundary, n"\4'.Jllr
1

..,,'
0 

possible for the localisation zone to spread since the yield strength 

1 Softening bar in tension 
show the regularisation introduced by gradient dependence, 

element is used to solve the one dimensional problem of an imperfect 
tension (Fig.2). For this case an analytical solution exists (de Borst 
Muhlhaus,1992) that can be used to verify the width of the ._'U',...,...., ... Jl,_, ....... JLV'JLI. 

zone and inclination of load-displacement diagram obtained ...... u.Jl.Jl.l.'-1>. 

the calculations the length of the bar is L= 100 mm , the 
modulus E=20000 N!mm2 , the tensile strength <Jy =2 N/mm2 

softening modulus h=-0. lE. The length scale is I =5 mm , 
gradient constant g = 50000 N the width of the localisation zone 

w=2n:l=31.4 mm. At the centre the bar (d=lO 
a 10% smaller value of CTy is assumed. 

conditions Ai = 0 and A :x = 0 are introduced for each layer ( i) at 

edges of the bar. 
y 

d 

x L 
I< >I 

Figure 2 Imperfect bar in tension. 

Figures 3 presents the results of finite element analysis. The n.n1r".ll 1 ..,, 0 n 

results are very closed to those existing in the literature (de Borst 
Muhlhaus,1992, Pamin,1993). They show convergence to unique 
upon mesh refinement, i.e. the analytical post-peak 
!iu/ l:i<J = (1 - n:) /E is retrieved and a localisation zone with a width close 

to w= 1 On: is observed. It is emphasised (de Borst and Muhlhaus, 1992) 
approach is capable of simulating the size effect, since the ratio 

governs the response in the post-peak regime. The increase of 
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structural size L with constant l result in a more brittle behaviour, 
,,., .... ,~ .... is consistent with experiments. 
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3 Distribution of plastic strains along the bar (top) and stress vs. 
displacement (bottom) for different mesh refinements. 

6.2 in bending 
A gradient-independent perfect plasticity test is performed to verify the 
algorithm behaviour of the new layered beam element in bending. A 
problem of plastic flow a clamped cantilever beam has been chosen. 
The schematic element layout ( 40 elts.) and loading are presented in Fig. 4. 
The geometry the material data for the concrete beam are based on 
(Hughes,1987): length L=400 mm, the height and the width are 
H=B=70 mm, Young's modulus E=20000 N/mm2

, the tensile strength 
cry=6 N/mm2 and the plastic modulus h and gradient constant g are set to 
zero. results of finite element analyses are presented in figure 5. It 
gives overall load-displacement response the beam for different 
number layers. We observe that increasing number of layers leads to 
more and soft response. It is noted that at certain stage of loading 
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lack of convergence occures. reason is a return mapping inside of 
yield contour. No proper algorithm has yet been elaborated to avoid 
undesirable behaviour. 
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Figure 4 Clamped cantilever beam. 
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Figure 5 Load-displacement for different layers number. 

7 Conclusion 

The finite element implementation of gradient-dependent plasticity has 
presented. The theory includes a regularising dependence of the 
function on the Laplacian of plastic strain measure. The fundamental 
feature of the used algorithm is a weak satisfaction of the yield condition 
which is coupled with equilibrium condition. 

A layered beam element with separate interpolation of displacement and 
plastic strain fields has been developed. It has been validated and applied 
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of strain localisation. Some obtained results show good 
agreement with available ones, but both of the algorithm and the element 

further study. For this reason different elements with different 
interpolations of displacement field have been developed and tested. It 

that the elements should fulfil some additional conditions, 
namely balance of interpolations for displacement and plastic multiplier and 
existence of suitable integration quadrature, a sufficient number of 
integration points to prevent zero-energy modes for the tow fields and 

accuracy sampling positions. 
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