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Abstract 

A newly developed crack growth model, Nielsen (1990), based on an 
energy balance criterion is presented in the paper. The model leads to a 
first order differential equation which can predict crack propagation 
mode I, and determine the strength and deformations for any 
condition. The model has recently been used to predict crack growth 
metals subjected to dynamic loading, Hansen (1994a). 

In this paper the model is compared with three point bending tests on 
plain concrete beams, where parameters have been 
beam dimensions, the strength and aggregate size. 

1 Introduction 

A newly developed fracture mechanical model, Nielsen (1990), on 
an energy balance criterion is presented in the paper. The model leads to 
a first order differential equation which can predict crack propagation, 
determine the strength and deformations for any loading condition. 
purpose of this paper is to the load-deflection relationship 
plain concrete beams in three bending using this model. 
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advantage of the presented in this paper compared to other 
mf'•r1'3IC of fracture mechanics for concrete is that the energy calculation is 

simple linear elastic calculations, which demand very little 
....,U' ........................... , ...... ...,. ... JL time. The non-linear behavior is taken into account, using a 

... ..., ...... ""' ..... u, correction based on the Irwin concept, Irwin (1960) . 
.....,..., ... .., ............................ ,JO., the total elastic energy W in a cracked specimen using 

elasticity gives close to the correct values, due to the fact that 
stress concentration effects in the process zone close to the crack tip 

Introducing an effective crack length aeff = a+ le, where le 
1s crack length correction, Irwin (1960), which represent a part of 

process zone, it is possible to take the non-linear behavior into 
account. 

2 energy balance propagation formula 

following the energy balance crack propagation formula (ECP) will 
shortly be presented. For further details the reader is referred to, Nielsen 
(1990). ECP is based on an energy criterion. Energy criteria were introdu-

fracture mechanics Griffith (1921). For a displacement control-
test, where the crack length a and the deflection u are the independent 

................. .._,., . ....,....,. the energy balance equation can be written, Nielsen (1990): 

(1) 

is the elastic energy, GF is the fracture energy, defined as the 
energy needed to propagate the crack a unit area and b is the thickness of 

specimen. Taking the correction le of the crack length into account we 

+ aw dl + ...... .,., ... 'U. ..... aa e 

,,., .... ~, . .-. can be rearranged to: 

= 

_aw dl 
aa e 

aw 
+-

aa 

= 0 (2) 

(3) 

crack length correction le depends on a as well as u we have: 

(4) 
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Inserting this into (3) and making a few rearrangements we get: 

aw ale 

da aa au 
du aw ale 

GFb+-(1+-) aa aa 

(5) 

The derivatives aw1aa should be taken at a+le, while avau and avaa may 
be taken at a. This expression is called the energy balance crack propaga­
tion formula. In the symmetrical case, meaning a crack with two tips and 
the crack length 2a, GF in the formula must be replaced by 2GF, W still 
being the total elastic energy. 

3 Numerical determination of crack growth 

As described earlier the crack propagation formula is based on an energy 
balance criterion. It is therefore necessary to determine the elastic energy 
in the actual cracked body (beam,disk etc.) for arbitrary values of the load. 

The elastic strain energy W can be determined by means of a finite 
element calculation. In this way W will be expressed as a function of the 
force P or the displacement u and the crack length a. 
In the case where one wishes to determine the load-deflection curve of a 
concrete specimen, it is convenient to express the energy W by the 
displacement u and a. 

It is common knowledge that the elastic strain energy is proportional to 
the square of the displacement and proportional to the modulus of 
elasticity. This means if we have determined W in the case of constant 
displacement and constant modulus of elasticity for any crack length, then 
we can express the energy as: 

W(u,a) = ( :J( ~)-we-0n& e,u(a) (6) 

The problem is now reduced to determine the elastic energy of the actual 
cracked body as a function of the crack length - only depending on the 
geometry. Very simple finite element models can be used to determine this 
function. We only have to calculate a number of models with similar 
geometry, except for the length of the crack, subject all these models to 
a constant displacement and determine the force P. The elastic strain 
energy can then be determined as a function of P and u. In the case of 
only one concentrated load the elastic strain energy is given by: 

W = %·P·u (7) 

When the elastic strain energy is determined for each crack length, a 
simple polynomial fit may be used to determine the elastic strain energy 
for constant displacement at any crack length. By increasing the crack 
length, the energy curve (for constant displacement) decreases as shown 
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where b is the thickness of the beam, and ~a is the ................ ...., ........... , ...... surface, 
the total effective crack length minus the correction the start 
notch length ao: 

aa = aeff - le - ao = a - ao 

Using a numerical integration formula the area ~A 
is found by solving numerically the equation (5). 

p 

Fig. 2. Definition of theareaLlA 
the load-deflection curve 

Consider as an example the following standard values parameters: 
E=30000 MPa, ft=2 MPa, a0=50 mm, b ·h ·L= 100 · l 00 ·800 mm3 let's 
separately vary the values of Gp, ft, E and a0 • The results are 
table 1. It's observed that the results show good accordance except 
small numerical error (which can be eliminated decreasing 
increment step). 

Table 1. Verification of energy balance 

Gp=0.05N/mm 17.69 3.58 

ft=4 MPa 76.50 7.71 

E=40000 MPa 12.78 1.29 

ao=25 mm 57.91 5.86 

Since the theory determines the load carrying capacity structure 
under the conditions described, it will be able to predict the size ..., ......... ..,"""'· 
it will be able to give the load carrying capacity as a ............. "" ......... , .. ... 
absolute value of any geometrical parameter D characterizing the size 
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the structure. As a measure of brittleness we take the common value: 

B=­
GpB 

(12) 

our case we put = h. Formula (12) reflects the fact that the larger the 
strength ft and the size D the more brittle structure. The smaller the value 
of Gp or E the more brittle structure. Large values of B belong to perfectly 
brittle structures. a perfectly brittle structure the load carrying capacity 
may be determined by Linear Elastic Fracture Mechanics (LEFM), i.e. by 
setting: 

KI = KIC = (13) 

where K1c is the critical value of the stress intensity factor, the fracture 
thoughness. we solve the crack propagation formula for increasing 
values of B by decreasing Gp, the load carrying capacity P peak will be 
decreasing. The of K//E at the peak should according to (13) 
approach the value assumed in the calculation, if the results approach 
the load carrying capacity of LEFM. The result of such a calculation is 
shown in table 2, and we observe that the value of K//E approaches the 
value of Gp for increasing brittleness. The load carrying capacity has been 
given in dimensionless form as the Na vier stress cr 

0 
along the depth h-a

0 

devided by i.e: 
0 o 3 

- - -·--"'------
L 1 (14) 

ft 2 b(h-a
0

)
2 ft 

Table 2. Load carrying capacity as a function of Gp I ~~~~~~~~ 

gl 10000 l.33E-6 529.7 1.27 4.3E-3 11 

g2 100 l.33E-4 529.7 1.27 4.3E-3 11 

g3 1 l.33E-2 528.3 1.26 4.2E-3 11 

g4 0.0267 526.9 1.26 4.2E-3 11 

g5 0.2 0.0667 522.8 1.25 4.lE-3 10 

g6 0.1 0.1333 516.1 1.24 4.0E-3 9 

g7 50.0E-3 0.2667 503.4 1.21 3.8E-3 9 

g8 1.333 426.0 1.02 2.8E-3 6 

g9 10.0E-4 13.33 209.9 0.50 6.7E-4 1 

glO 10.0E-5 133.3 73.55 0.18 8.0E-5 0.1 
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Fig. 3. Failure load versus Brittleness Number 

The results are also depicted in figure 3 (points marked "variation "). It 
appears that when increasing the brittleness number B the load carrying capacity 
approaches the results given by LEFM, i.e. the results for a perfectly brittle 
structure. In the other end for small values of B, the result is expected to 
approach the load carrying capacity of an almost perfectly plastic structure. 
For a perfectly unnotched plastic beam with rectangular section in bending 
tensile strength ft and infinite compressive strength fc the theoretical 
(U.L.) equals crjfr=3. Having a finite compressive stress fc and if the ratio be­
tween ft and fc is put to a=f/fc=O. l we get the theoretical upper limit crjft=2.73, 
see Olsen, P. (1994d). 

For decreasing start notch length the results of the theory will approach a 
limiting value close to this upper plastic solution as shown in table 3. 
case, with a start notch depth being half the full depth h, the limiting 
reduced. As we observe in table 2 the value is found to be crift=l.27, 
case. 

Table 3. The relative stress approaches the upper plastic limit for an 
unnotched beam when the notch length is decreased 

25 1327 1.42 

10 2302 1.71 

5 2905 1.93 

1 3806 2.33 

0.001 4306 2.58 

0.00001 4307 2.58 
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by varying the other parameters determining the 
shown. It appears that the results are lying on 

same curve as before as they should. 
takes effect into account by the variation of the crack 

""'"' ............. , ...... 'U ..... le le is large (relative to the beam height) the 
agreement with what we observe in table 2, where 

values of the brittleness number. 

...,...,_, ...... ,_,..... the new of crack propagation will be compared with 
bending tests. The three point bending tests were performed 

Engineering, Technical University of Denmark, 
(1994b) and (1994c). 

of the crack propagation formula three different test 
carried out. Several parameters were varied. Four different 

.., .... .,., ...... v ... ...,u,._. ... 'U ...... strength levels were used ( fc = 30, 50, 70 and 100 MPa). Further 
the start notch and the depth of the beam a/h was varied being 0 .1, 

Finally the aggregate size was varied for each strength level. The 
............. ; .. .._ ....... .,,.. ... J ...... aggregate size dmax was: 0 mm, 4 mm, 8 mm and 16 mm. 

described in section 3 the theory is not able to predict the whole load-
......... .11.Jl.., ... , ...... '"' ..... curve, due to that when the process zone reaches top of 

assumptions fail to be valid. Therefore the calculation is only 
a part of load-deflection curve. To determine the load-

.... ..., ... Jl ........ , ... Jl..._, ..... curve using crack propagation theory, the following parameters 
the fracture energy GF, the tensile strength ft and the modulus 

E. As far as possible they should be determined independently of the 
.._,...,,u ................... test results. 

energy GF is Olsen, D. (1994b), determined using the three point 
...,. .. ,., ............... ""' .... u_.., ......... v·~ in accordance with the recommedations of the RILEM Technical 

Rilem (1985b ). In this method the measured load-deflection 
not give the amount of energy consumed, due to the fact that 
is not only from the applied force but also from the 

of the beam, to be taken into account when determining Gp 
using the method suggested by Hillerborg (1985a), putting the 

=Til•"'rn· ... , equal to the area under the measured load-deflection curve plus the 
from the netweight. GF used in the theoretical calculations will 

..... ..,.,....,Jl_.Jl ......... ,..,""" on the basis formula (10), having ~a=h-a0 and ~A being the 
the measured load-deflection curves. The calculated load­

.......... .11 .... ,.., ... , ...... ..., ...... curves have been determined for a concentrated load only, disregard­
netweight of the beam. These curves are compared with the measured 

curves, the load meaning the applied concentrated load and the 
..._...,Jl_..._...,"", ... Jl'U'JLll meaning the deflection measured in the test having zero value when 

is acted upon only by its own weight. 
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= mm 

32950 

Parameters used mm 

25160 81.l 2.90 

* The splitting strength for this test series was not measured. The value is based on .... ,., ... IJ'-"U~•vu from 
the other splitting strength measurements. 
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Fig. 4. Variation of Strength 
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Fig. 5. Variation of notch length 
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Fig. 6. Variation of aggregate size 

Figures 4-6 show the measured load-deflection curves and the ones calculated 
by the crack propagation formula. The aggrement is in most cases found to be 
excellent. 

5 Conclusion 

The purpose of this paper has been to present a theoretical crack propagation 
formula and compare it to three point bending test results of plain concrete 
beams. 

The main conclusions are that the new crack propagation theory presented is 
able to predict the peak value and some part of the descending part of load 
deflection curve excellently in most of the cases, both for different ..,., .... ..., ..... ,;;.. .......... 
levels, different ratios of start notch length and depth (aih) and 
different kinds of concrete materials (aggregate variation). 
The theory is also able to take size effects into account, and it has been shown 
that the theory gives results approaching the plastic limit of the load carrying 
capacity for an unnotched beam. 

One of the main advantages of the theory is that the theory needs very small 
computation times to reach the results, contrary to other methods of fracture 
mechanics. 
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