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Abstract 
The proper prediction of the width and the spacing of primary cracks in reinforced ele­
ments is subject of this paper. Attention is focused on the influence of the crack con­
cept. A comparison has been made between standard crack models and the gradient 
crack model. The effect of the inclusion of a length scale parameter on the crack spac­
ing is determined. Furthermore, attention is paid to the crucial role of the bond-slip 
characteristic in predicting crack spacing in reinforced elements. 

1 Introduction 

A number of computational issues related to the modelling of failure in reinforced ele­
ments will be addressed. In the paper we focus on the proper prediction of the width 
and the spacing of primary cracks in reinforced concrete. A level of modelling is adopt­
ed in which the traction-slip behaviour is explicitly taken into account via interface ele­
ments. In this fashion the influence of the material characteristics for concrete, bond­
slip and steel on the crack spacing can be analysed. 

If we use a standard crack model for the description of the concrete a mesh sensi­
tivity occurs during the formation of a pattern of primary cracks. The width of a single 
primary crack and the spacing between the primary cracks is affected by the discretisa­
tion, i.e. a smaller element size results in a smaller crack width and in a smaller distance 
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between the cracks. On the other hand, when a pattern of cracks has developed the 
behaviour is determined by the steel and no additional spurious mesh size effects 
occur. It will be shown that enhancing the model by including the fracture energy as a 
separate material does not solve the problem. Namely, for reinforced con-
crete the amount of energy that is released a fully developed of 
cracks is determined firstly, the energy consumption of a single crack and, secondly, 
the crack spacing. It will be shown that this latter quantity is not predicted correctly 
with a so-called fracture energy-type model. 

To remedy this improper behaviour the standard continuum model must be en­
riched by higher-order terms, either spatially or in the time domain. These mod­
els introduce a length scale parameter that reflects the inhomogeneous micro-structure 
of the material. This parameter sets the size of the fracture process zone. In reinforced 
structures the introduction of this length scale through higher-order terms 
determines the failure mode and is proportional to the spacing of the cracks. 
Use of the model removes the mesh dependence in the crack "'IJ"''...,H''"" 

and a with experimentally measured values for the crack spacing may pro-
vide a physically realistic estimation of the length scale parameter. It will be shown that 
HA'"'''-"'"'H-AA·•i-. of the behaviour is of crucial importance. 

c01nniutat10:na1 analyses have been carried out with a bar with one reinforce­
ment bar loaded at both sides by a force. The dynamic case is easier to per-
form The evolution of the primary crack pattern follows the stress 
wave on the crack formulation, primary cracks occur at more or less reg-
ular distances. In statics, on the other hand, the first primary cracks occur at HHIJ'-"· ... ...,,,.,L 

locations and other cracks form in between which gives a value for the crack spacing. 
So, in computations no imperfections have to be included because the non­
uniform solution is driven by the stress wave. The evolution of primary cracks is differ­
ent from the static case but the resulting value for the crack spacing, except from a neg-
ligable rate is of the same order. 

-:. ..... ,,, ... ",,,..t~"'"' for the finite element modelling of reinforced concrete can be 
in the vicinity of the bar is of 

AAA,._,, .... ....,_ ... H,,ji., of the reinforcing bar with ribs that provide the mechanical in-
such a model next to the or domi-

·~·•t-,A'•~~·u .. ~· cracks and crushing in compres-
1988). This approach is essential for a 

better behaviour between the concrete and the steel. For 
analyses of reinforced concrete however, the above approach that includes all 
possible mechanisms is too Dependent on the distribution of the rein-
forcement two can be used. When the reinforcement is concentrated in a few 
dominant bars traction-slip behaviour can be lumped into interfaces. 
The width and of primary cracks can be studied with this type of u•v .... .,., •. u .. _,_,. 

when the concrete is densely reinforced not every reinforcing bar can 
"""r•<:i ... ~n""'" and an embedded formulation is used to model the primary 

cracks. then accounts for the bond characteristics, but a true be-
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haviour between the concrete and the steel cannot be modelled. In the analyses it will be 
demonstrated that this slip behaviour dominates the spacing of the primary cracks. 

In this paper we focus on the proper prediction of the width and the spacing of 
mary cracks in reinforced concrete. A level of is adopted in which the trac­
uuu-c,, .. u behaviour is explicitly taken into account via interface elements. In this fash­
ion the influence of the material characteristics for concrete, bond-slip and steel on the 
crack spacing can be analysed. An of the finite element idealisation of the 
,..,..._,'Y\..,.,"'"''""" material is shown in 1, in which the steel reinforcement bars have 
been modelled with three-noded truss and in which six-noded interface ele-
ments have been introduced for the modelling of bond-slip behaviour between the con­
crete and the reinforcement. The width i of the interface element (see Figure 1) is 
to zero, while the thickness of the interface element is equal to the periphery of the rein­
forcement bar. It is noted that such a model gives a small overestimation of the cross­
sectional area because the reinforcement is modelled in addition to the beam. For this 
reason density and stiffness of the beam are slightly larger. 

o11111111 concrete 
8-noded plane-stress element 

_.-.,....-1---- bond-slip 
6-noded interface element 

~--steel 

3-noded bar element 

Fig. 1. Finite element idealisation of reinforced element. 

3 Material modelling of reinforced concrete 

The composite material consists of concrete and steel bars for which the distinct consti­
tutive relations and interactive forces will be discussed in this section. The interactive 
forces between the concrete and the steel bars are determined via a bond-slip 
which is the constitutive the interface elements. For the concrete we use a 
smeared model in which the crack is conceived to be a continuum which permits a de­
scription in terms of stress-strain relations. We use three different concepts, namely the 
standard crack concept, the Grtype crack concept and the strain-gradient dependent 
crack concept. 

Concrete : the standard crack model 
In the standard formulation for cracking we use a decomposition of total strain c into an 
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strain £ e and a crack strain £er. In a stress direction a stress 
,..,"",,,. .. ..,,,..,..,,,.,,...,..,.. takes to 

(j = + (1) 

(j denotes stress, ft is the initial tensile 
The use of a standard model for c;~~~c!~:~.i-, results in an 

i.e. under conditions each wave has an u ....... ;;._AH .. U wave 
consequence, a continuum discretised in finite elements 

one element wide 
shows a crack zone 

It appears that this solution 
lJvJ.vu•::.0 to a wave with a speed and 

to the finite element size linear elements see 
scale which sets the width of the frac-

information on the micro-structure of the 
concrete is the discretised standard continuum this length scale is set the 

finite elements which makes the finite element simulation unreliable. This is 
which the between the ........... rn·~..-" 

the mesh size as A smaller mesh size a faster ae:gniLaanon 
co1nsi::~qu1enuv a second ..... ,..,,.,. . .,,~, crack will occur sooner and at a shorter dis-

crack model 
the standard continuum model and 

u.,L,..,L(.U'\. and Mroz 1981, Ba.Zant and Oh 
curve as a ma-

the fracture energy 

ds. (2) 

energy must be released over an which for a standard 
should dimension of the mesh size. By this 

rl1-:i,tirr•c:>rn has become a function of the finite element 
~u~•AA..._ ..... the fracture energy as an additional material the 

.... ucc•1-.n• .. ..., ...... u ....... response can become to the discretisation. Howev-
.,...,....t·i-., .... ,,,. has altered and localisation still takes in one row of elements . 

...,,,. ..... "' ...... of character of the differential occurs 
<>rlr,.,....t-,,-nr'r the soft-

severe convergence are 
,,_,,..,,,,....,,,,.,.., .... , ... "" ... '"' ... t-""r1 observation still holds that the localisation zones are biased 

...,LJ .... "'" .......... along the mesh lines. For reinforced elements 
crack can be made mesh objective but the spac-

,...,,,.,,....,-,.~, ,..~ on the finite element '"'"''·'H'"' ....... u·v ... 

crack model 
that can be used for the concrete to 

crack model and 
Mtihlhaus and Aifantis 1991, de Borst and Mtihlhaus Sluys 1992, Parnin 

<T,...,"',..._n.,..,,"" .... strain ,,,. .. ...,,..,,,,, .... ,..,., are introduced which .. "' ....... "'c"'1-it nonlocal interactions at a 
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micro-structural level of the concrete. The model is formulated within a Rankine 
framework. An expression in one spatial direction reads 

a=fr+ 
- d2Ecr 

+ c dx2 ' 

with c a ,.....,.,.,,,..,,,,...,,,. r>'A•·<:>n-1i:>u,. .. 

of micro-structural 
transmit waves with wave Hn'''-UAU 

to the wave 

(3) 

...,,,. •• ,.,rY,,,..,,.,,. in the model (l = The station-
ary wave with the maximum wave that is transmitted the '"'" .. """''''"'..- de-
-ni:>inr1.,.nr continuum is the solution for the process zone of one 

Mesh is removed and the scale '"":"·"n-'""''" .. 

Steel r.cnnrr1rr,on1Pnt 

For the steel bars 
sis described 

the crack as be demonstrated 

relation has been used. In the 

.....,,,.1-.1,_,,,H •• ,., ...... u data available and cannot be 
transformed into a constitutive law interface be-
haviour and the shear normal are not .,,..,,..,.,...,,. . .._,..,. ... ..,.,,.ri and the constitutive equa-
tion for the interface element reduces to a shear traction - relation. This 
behaviour between reinforcement and concrete has been modelled the relation of 
Dorr 

= c [5. 

1: = . 9 c if 8 > 

4. 0<8< (4) 

(5) 

in which c is a constant which is taken to the tensile uu~u•-u• ft and is the de-
formation at which occurs which is to 0.06 mm. 

4 

The loads The is such 
that cracking is initiated when the two waves meet in the centre of the bar while 
the response of the steel bar remains elastic. A that 
waves reflect at the two ends of the bar before the ....... ,,,.,,..,~ .. " 
The data set for the reinforcing bar problem is as follows are ex1ornme:a 
ure 2). The bar geometry is: length L = 4000 mm, cross-section A= lOOxlOO 
a 0 20 reinforcement bar. The loading is distributed over the cross-section such 
that the interactive forces at both ends are zero, i.e F 0 = 18.3 kN (15.0 kN on concrete 
and 3.3 kN on steel bar) and td = 0.00005 s. For the concrete we have the Young's mod­
ulus Ee = 30000 N/mm2

, Poisson's ratio v = 0.2, density p = 2400 kg/m3
, ft = 2.0 

Nlmm2 and £u = 0.001. For the Grtype crack model the additional parameter is the fi­
nite element size, while for the gradient crack model the gradient constant c, and 

the length scale l, is chosen. The algorithmic aspects of the mixed finite element 
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4000 mm 

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

mesh 1: 80x2 concrete elem. mesh 2:160x4 concrete elem. 
80 bond-slip elem. 160 bond-slip elem. 
80 steel bar elem. 160 steel bar elem. 

Fig. 2. Reinforcing bar 

formulation for the gradient model with reduced integration are given in (Parnin 1994). 
The constitutive equation for the reinforcement reads: £ 5 = 210000 N/mm2

, p = 7800 
kg/m3 and f~y = 500 N/mm2 and for the bond-slip characteristic : c = 2.0 N/mm2 and o0 

= 0.06 mm (cf. eqn.(4)-(5)). The semi-discrete equations of motion have been solved 
with a Newmark time integration scheme with the updates 

(6) 

and 

(7) 

in which a, a and a are the nodal accelerations, velocities and displacements, respec- · 
tively. The integration constants are taken equal to fJ = 1/4 and y = 112 corresponding 
to an average acceleration scheme. The time step in all analyses M = 2.5- 1 Oe-6 s and a 
consistent mass matrix has been used. The Newmark scheme is used in combination 
with a full Newton-Raphson procedure to solve the nonlinear algebraic set of equations. 

4.1 Perfect bond 
Perfect bond can be established by omitting the interface elements from the finite ele­
ment geometry in Figure l. If the response of the steel remains elastic perfect redistri­
bution of stresses in the bar is obtained. The crack concept has been studied for the per­
fect bond case and the results are shown in the Figures 3, 4 and 5. In Figure 3 the strains 
in the concrete are given for the standard crack model with mesh 1 and mesh 2. The 
classical mesh-sensitivity problem for the crack width also plays a role for reinforced 
softening materials, namely all deformation per primary crack occurs in one vertical row 
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Fig. 3. 

Fig. 4. 

Exx [xl0-3] 
6.0~---------------~ 

4.0 

2.0 

0.3 

0.2 

0.1 

0.0 0.2 0.4 0.6 

- mesh 1 
- mesh2 

0.8 
x 

1.0 

Standard crack model - Perfect bond - mesh 1 and 2 - t = 0.0015 s. 
Arbitrary locations of primary cracks. 

0.0 ___.._--~---~--~--~------! x 
0.0 0.2 0.4 0.6 0.8 1.0 

Gradient crack model with l = 10 mm - Perfect bond - mesh 1 and 2. 
Crack spacing ls at t = 0.0015 s. 

of finite elements. For mesh 1 a number of cracks occur which decreases considerably 
by using mesh 2. So, the bar discretised with a finer mesh behaves more brittle (less en­
ergy per primary crack is consumed) which reduces the number of cracks. As will be 
discussed for the bond-slip case the results do not only depend on the finite element size 
but also on the time step, the time integration procedure and the mass discretisation 
(lumped, consistent). By not correctly predicting the crack spacing the amount of ener­
gy that is consumed in the bar is arbitrary and the results are unreliable. A G rtype 
model does not improve the results. Although the amount of energy consumed per 
crack is more or less the same for mesh 1 and mesh 2, the location of the primary cracks 
and the crack spacing (related to the number of cracks) is arbitrary. 

For the gradient model the results are different. Taking the length scale parameter 
l = 10 mm gives a dense pattern of primary cracks (see Figure 4). The results no longer 
are arbitrary, i.e. for the two different meshes we obtain similar results, although mesh 1 
is still a little bit too coarse to reproduce this crack pattern. For this case without the in­
corporation of bond-slip the length scale parameter can be related to the observed crack 
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- mesh 1 
- mesh 2 

0. 

0.0-+-----,-----,-----.-----,----~ x 
1.0 0.0 0.2 0.4 0.6 0.8 

0.2 Exx 

0. 

0.0-+----=--.---==--,-~-===----.---==-----,~-='---------1 x 
0.0 0.2 0.4 0.6 0.8 1.0 

5. Gradient crack model with l = 20 mm - Perfect bond. 
Uniform distribution of strain in concrete at t = 0.001 s. 

Bottom: Stroboscopic evolution of strain in reinforcement 
< t < 0.001 

In this fashion the gradient constant c can be determined on the basis of 
crack spacing measured in experiments. For an analysis with a length scale l = 20 mm 
the results are in 5. For this analysis perfect redistribution of stress 
... u ......... ,_ ... the bond behaviour shows a uniform distribution of crack strains over 
the bar. After the time that the two waves meet in the centre of the bar the elastic wave 

up into an elastic - F 0/A) which approximately propagates with the bar 
up 11

'"'"'

1 r" ce = and an inelastic that causes cracking which with 
ccr. As shown in 5 the strains in the reinforcement, which remain ..,, .... ,,u • ...,, 

are the same as the total strains of elastic and crack strain) in the concrete. 
To consume the correct amount of strain energy for the case of bond the 

area under the curve should not be G 1 I e, with e the finite element as in 
the G rtype crack model because then you will see an unlimited grow of consumed en-
ergy upon the mesh. This problem is opposite to the classical mesh-
dependence problem for softening materials in which mesh refinement leads to a 
reduction of the strain energy. In conclusion, using the gradient crack model for the per­
fect bond case results not only in mesh-independent analyses but also in physically real-
istic analyses when the scale is coupled to the crack spacing observed in 
men ts. 
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a) 

4.0 -

2.0 -

0.0 A 

I I I I x 
0.0 0.2 0.4 0.6 0.8 1.0 

8 [mm] 
0.05 -...---------------------, 

-0.05 x 
0.0 0.2 0.4 0.6 0.8 1.0 

0.6 
Exx [xl0-3

] c) 

0.4 

0.2 

0.0 x 
0.0 0.2 0.4 0.6 0.8 .0 

0.3 
ux [mm] 

0.2 

0.1 

0.0 x 
0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 6. Standard crack model - Bond-slip - mesh 2 - t = 0.0015 s. 
a) Strain in concrete, b) shear deformation in interface, 
c) strain in steel and d) axial displacements. 
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6.0 -
- /3 = o.25, r = o.5 

4.0 - - f3 = 0.4225, r = o.8 

2.0 -

0.0 A A. \ \ 
I I I I 

0.0 0.2 0.4 0.6 0.8 

7. Comparison of crack models - Bond-slip - t = 0.0015 s. 

4.2 Bond-slip 

Top: Standard crack model - mesh 1 and mesh 2. 
Centre: G rtype crack model - mesh 1 and mesh 2. 
Bottom: Variation of time integration scheme - mesh 2. 

x [m] 
1.0 

For the proper calculation of the crack spacing and the crack width the inclusion of 
nm1a-~·mn is crucial. To demonstrate the character of the solution for an analysis with 
the standard crack model Figure 6 shows the plots for the strains in the concrete and the 
steel, the shear deformation in the interface and the axial displacements. After the time 
the two waves meet a first primary crack appears. When the stress wave propagates fur­
ther a second and a third primary crack occur. At the locations of primary cracks a 
steep gradient in slip in the interface element takes place. Although the response of the 
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0.6 
Exx [xl0-3] a) 

- mesh 1 
0.4 - mesh2 

0.2 

0.0 x 
0.0 0.2 0.4 0.6 0.8 1.0 

8 [x10-3 mm] 

4.0 - mesh 1 
- mesh2 

0.0 

-4.0 

-8.0 x 
0.0 0.2 0.4 0.6 0.8 1.0 

0.3 
&xx [xl0-3] c) 

- mesh 1 

0.2 
- mesh2 

0.1 

0.0 x 
0.0 0.2 0.4 0.6 0.8 1.0 

0.5 
Ecr-xx [xl0-3] d) 

0.4 

0.3 

0.2 

0.1 

0.0 x [m] 
0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 8. Gradient crack model with l = 20 mm - Bond-slip - t = 0.0015 s. 
a) Strain in concrete, b) shear deformation in interface, 
c) strain in steel and d) stroboscopic development of crack strains. 
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Exx [xl0-3] 
1.2 ~------------------. 

0.8 

0.4 

l = 10 mm 
- l = 15 mm 
- l=20mm 

0.0-+-------,----.------.------.------1 x [m] 
1.0 0.0 0.2 0.4 0.6 0.8 

9. Gradient crack model - Mesh 2 - t = 0.0015 s. 
Variation of the length scale parameter. 

0.6 

0.4 

0.2 

0.0 0.2 0.4 0.6 0.8 

0.6 dominant cracks 

0.4 

0.2 

x [m] 
1.0 

0.0-1-~~.....=:=...-~---.::!-.....:::;___,...~-=-~~..:::__..:::;; ....... =-=~r....-l!!!liiiiii;~ x [m] 
1.0 0.0 0.2 0.4 0.6 0.8 

10. Gradient crack model - Mesh 2 - Shift in primary crack pattern. 
Top: 0 < t < 0.001 s. Bottom: 0.001 < t < 0.0015 s. 

steel is elastic the peaks in the strain profile are clear. For the standard crack model as 
well as for the G rtype crack model the dependence of the crack spacing on the spatial 
discretisation (mesh size) and the time integration scheme (Newmark - average acceler­
ation versus Newmark - damped) have been studied and the results are given in Figure 
7. The same problems are observed as shown earlier for the case in which the slip con­
tribution between concrete and reinforcement was left out of consideration. A primary 
crack occurs in one vertical row of finite elements and the spacing between the cracks is 
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8.0--------~ 
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4.0 
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0.0 -l'-----~------1 8 
0.0 0.1 0.2 

c =2.0 
= 0.06 mm 

c = 2.0 N/mm2 

80 = 0.12 mm 
c = 3.0 N/mm2 

80 =0.06mm 
1"\A1CT<>t~t" bond 

Ecr-xx [Xl 0-3] 
0.8 ---.,..------------------, 

0.6 

0.4 

0.2 

0.0-+-~_::s;.~..,-=::::::::::_~~_:::::==~:::....---===::::_-=..__,_;~:::=:==---=i 

0.0 .0 

11. Gradient crack model with l = 20 mm - Mesh 2. 
Influence of the bond-slip characteristic. 

x 

influenced by the finite element size and the time integration procedure. The mesh de-
1-1"-''·''·"'' ....... .., with respect to the crack spacing cannot be repaired by using a G rtype crack 
model and for this reason global mesh objectivity for the strain energy as 
obtained in plain concrete analyses with this model is not achieved. 

For the model with a length scale l = 20 mm the in crack 
width and crack spacing is removed completely. The two meshes give the same results 
for the response in the concrete, the interface and the steel. The distance between the 
cracks is more or less constant Z.~ = 14.2 mm. The influence of the length scale parame­
ter l on the crack spacing (~ has been analysed in Figure 9. It is clear that the crack 
"'.....,,,,,,...,.,,.,. is proportional to the scale. A remarkable result is obtained for smaller 

scales (see Figure 10). a pattern with cracks at regular distances occurs. 
further loading it is observed that the crack spacing is reduced by a factor two and 

that the localised deformation of one out of two primary cracks continues. 
Finally, the influence of the bond-slip characteristic on the crack spacing has been 

investigated. Three shear traction-slip curves have been considered. Next to the refer­
ence curve,.both the level of deformation as the level of shear traction at which perfect 

occurs have been increased by a factor 2 and 1.5, respectively (see Figure 1 The 
curves show the crucial role that the bond-slip behaviour plays in the analysis. A stiffer 
bond-slip characteristic decreases the distance between the cracks while a softer 

relation increases the value for the crack spacing. bond be-
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tween concrete and reinforcement completely smooths out the inelastic deformations 
and a crack spacing cannot be observed. 

5 Conclusions 

The widtl1 and the spacing of primary cracks in reinforced elements have been studied. 
Attention is focused on the influence of the crack concept on the crack spacing. A com­
parison has been made between standard crack models and the gradient crack model. A 
fracture energy-type model prevents that the energy release per primary crack goes to 
zero upon mesh refinement but results for the crack spacing are completely arbitrary. 
Only the gradient model provides satisfactory results through the introduction of a 
length scale parameter. Mesh sensitivity with respect to the crack width and the crack 
spacing can be removed. The additional gradient parameter in the model can be cou­
pled to the crack spacing measured in experiments. Furthermore, the crucial role of the 
bond-slip characteristic in predicting crack spacing in reinforced elements is deter­
mined. 
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