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Abstract

For the constitutive modelling of concrete, a physical approach has been
chosen. The structure of the material is reduced to its bare essence: an as-
semblage of equal spheres in their most dense configuration. The spheres
are assumed to be rigid, whereas stiffness and strength are concentrated in
contact layers of equal thickness between the spheres. A physical failure
criterion is introduced; cracks wil develop as soon as the tensile strength in
the contact layer is exceeded in whatever direction. For calculation pur-
poses the assemblage of spheres is replaced by an equivalent regular 2D-
or 3D-lattice. The mechanical behaviour is basically linear elastic. The
model is providing its own failure surface. Non linear effects are intro-
duced by subsequently changing the properties of the members of the lat-
tice in which the failure criterion has been violated.

In the paper a few simple models are reinvestigated, to show the limi-
tations of 2D-models in respect to the location of a regular grid towards
the direction of uniaxial tensile and compressive loading. The objective is
to obtain a better understanding of the stress transfer in the post peak re-
gime. Results wil be used for a revaluation of the failure criterion for the
macro model. Furthermore some failure criteria of other workers with
physical models are discussed.

965



1 Introduction

There are two trends in the constitutive modelling of concrete and other
brittle disordered materials :

1 A phenomenological approach; widely used in applied mechanics.

2 A physical approach; more common in the science of materials.

In both methods the mechanical behaviour of a material is determined by a
few basic tests. In the first approach, the attention is focussed on the ma-
thematical description of the observed phenomena. But in the second one,
the physical explanation of the mechanical behaviour is of primary inte-
rest. This second approach seems more promising as one should not only
know how things happen but also why they happen.

The finite element method — based on continuum mechanics — is a typ-
ical example of a highly mathematical phenomenological approach. It is
an excellent tool as long as non lincar effects can be neglected. Difficul-
ties are arising however as soon as crack formation has to be simulated.
Cracks are smeared out or have to follow a predefined path. Remeshing
has also been introduced. In the description of the non linear behaviour in
the pre and post peak regime, generally the original finite element confi-
guration is maintained and only the stress-strain relationship is adjusted.

In a physical approach however, the structure of the material has to be
introduced. Concrete is then regarded as a two phase material with coarse
aggregate particles embedded in a matrix of much softer material. The
particles are mostly assumed to have a spherical shape in 3D-problems
and are regarded as circular discs in 2D-problems. In a calculation such
assemblages are often replaced bij regular or random lattices. They are ei-
ther treated as trusses in which the members are only transmitting normal
forces or as frameworks in which shear forces can be transmitted as well.

The introduction of non linear effects in constitutive models follows
the previously described main trends. The phenomenological approach is
giving quite convincing load displacement diagrams, but an unsatisfactory
crack development as long as no remeshing is introduced. A recently pre-
sented physical approach however, is capable of describing a slowly de-
grading structure of the material. The stress-strain relationship of the ma-
terial itself remains basically linear elastic but members of the lattice are
subsequently removed or provided with new properties after their failure
criterion has been violated (Herrmann 1988). Several investigators have
applied the latter lattice approach on a micro-scale (Schlangen, van Mier
1992). The crack formation agrees very well with test results in tension
and shear, but the load-displacement diagrams are mostly showing a too
brittle behaviour. As a consequence both sides claim that something must
be essentially wrong with the method they don't use themselves and clari-
fication of this problem is needed. Very promising results however have
been obtained by the distinct element method (Vonk 1992).
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2 Spherical model

Concrete consists of aggregate particles in various shapes and sizes, em-
bedded in a much softer mortar matrix. If a concrete specimen is sawn in-
to two pieces it mostly gives the impression as if the aggregate particles
were 1n suspension in the matrix during the hardening process. More than
once such patterns — with the particles on rather large distances — are taken
as the starting point for the schematization of concrete. Some researchers
try to model the original shape of the larger and medium sized particles,
others replace them by spheres having comparable sizes.

In our opinion this is a misleading approach. We strongly feel that
concrete should be regarded as a three-dimensional skeleton of larger and
smaller aggregate particles, almost in direct contact with each other. The
matrix then acts as a filler, capable of transmitting tensile stresses. Fur-
thermore we intend to model concrete on a macro scale. So quite some re-
finement has to be abandoned and only the essence of the structure of the
material should be taken into account. Our starting point is a regular as-
semblage of equal spheres in their most dense configuration, see fig. la
(Beranek, Hobbelman, 1991, 1994). The dimensions of these spheres are
not supposed to represent the actual sizes of the larger particles.

In this way the continuum is replaced by a semi-continuum. The usual
space filling elements of the finite element method are substituted for
spherical elements each making contact in twelve points with the other
elements, whereas adjoining elements have only one point in common. As
a result 74 % of the continuum is replaced by the agregate and the rest by
the filler. Due to the much lower modulus of elasticity of the filler, all
stresses between the spheres wil mainly be transmitted in the direct vicini-
ty of the contact points between the spheres.

The system lines of such assemblages are the same as those of com-
monly used space grids. The essence of the configuration is shown in the
octahedron of fig. 1b. Triangular grids exist in four sets of planes, parallel
to the sides of the octahedron, whereas at the same time square grids exist
in three sets of orthogonal planes.

'F‘ig. 1 Similarity between the spherical model and a lattice model
a. Spherical model b. Octahedron with adjacent tetrahedra
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3 Mechanical behaviour of the model

For a description of the mechanical behaviour of concrete, the spheres
could have been regarded as elastic bodies, connected by interface ele-
ments. But we have preferred a more drastic schematization. The spheres
themselves are regarded as rigid. Stiffness and strength are concentrated
in elastic contact layers around the contact points of the spheres, with a
circular cross section A* and a thickness *, see fig. 2a. Their mechani-
cal behaviour is determined by the elasticity modulus E* and the shear
modulus G*, with v = G* / E*. The quantities marked with an * have
only a meaning for the contact layers themselves.

In a homogeneous state of external stress the normal stresses ¢ and the
shear stresses 7 then have to be uniformly distributed over the cross sec-
tional area of each contact layer. They wil cause a normal force N and a
shear force Q , both going through the center of the cross section; fig. 2b.
The resultant force F will have a line of action, making an angle ¢ with
the system line between the centres of the spheres, see fig. 2a.

The properties of the model are determined in axial tension and com-
pression, just as in continuum mechanics. The behaviour of the material
in a 2D-model is characterized by three spheres, in the shape of a triangle,
see fig. 2a,b. These spheres will only translate towards each other, but not
rotate. The displacement of two spheres towards each other is given by
the numerical values of An and Ar , with:

At/ An= Q/Nwy (1)

From the equations of equilibrium and compatability one finds in uniaxial
compression the following ratio:

Q 4
o =5 =V354 @
Poisson's ratio of the configuration proves to be equal to:
1-
ve¥ ©)
3+ v

For the time being, the material of the contact layer is assumed to be ho-
mogeneous and isotropic in the classical way. As the spheres are assumed
to be rigid, no transverse strains can develop. From this condition ¥ can
be expressed in Poisson's ratio v* of the contact layer as follows:

N 1-2vy*
V=20

The numerical value of v* is treated as one of the basic parameters of the
model, which should only be used for 0 < v* < 0.2

4)
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4 Equivalent lattice model

Any spherical model can be replaced by an equivalent space grid (lattice
model) along the system lines of the spherical model, see fig. 2c. The
members have to be rigidly connected to each other in the nodes, which
are not allowed to rotate towards each other, so Q a = 2 M, see fig. 2c.
The normal stiffness EA and the bending stiffness £/ of the members
have to be chosen in such way, that under the same external load the same
displacements will occur as in the spherical model, which in their turn
should represent reality. The displacement of two spheres towards each
other is given by the numerical values of An and At , with:

At Ad Q

An 121 N
Substitution of (5) in (1) gives the following relationship between A and
I of the member:

_V o, 2

I = W A a 6)
From equation (6) it follows that the radius r of a circular cross section or
the height % of a rectangular one, are respectively equal to:

V3

r=Ta\/1// and h =ay (7a, b)

®

In equation (7b) the width » of the member is chosen equal to the width
of the model. Furthermore one can assume that £ member = E concrete, a$
differences are negligible.

Fig. 2 Replacement of the spherical model by an equivalent lattice model
Basic unit of three spheres in uniaxial compression

Displacements of the contact layer subjected to forces from the spheres
Displacements of the member of the lattice due to forces in the nodes
Bending moment in the member and thrustline of the member

0o
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5 FKailure criterion

Failure of concrete is always caused by cracking. So a linear stress-strain
relationship is assumed in which only the uniaxial tensile strength f; is
defined, see fig. 3a. Cracks are supposed to occur as soon as the tensile
strength in the contact layer is reached in one or another direction. In the
contact layer no transverse strains are possible as the spheres are assumed
to be rigid. This leads to the following ratio 1 between the transverse
stresses and the normal stress, see fig. 3b:

OSS Oll V*
’]7 = = = 8
o o l-v* ®)
nn nn

In fig. 3¢ some Mohr's circles are shown all having the same principal ten-
sile stress, which is taken equal to the tensile strength f;. The matching
normal and transverse stresses are obeying equation (8). So each circle
represents a combination of normal stress oy, and shear stress oy; which
will cause failure, see fig. 3b. The critical shear stress can be expressed as:

om=i\/ft2—ft(n +1)o +7 onz 9

n

Equation (9) represents a hyperbola with the origin of the coordinate sys-
tem in a focus, with the asymptotes under an angle ¢ with tg ¢ =+ Vn.,
see fig. 3d. In fig. 3c also the crack direction in the contact layer is shown,
which is hardly changing in mode II: compression + shear.
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Fig. 3 Failure criterion for the contact layer (v* =0.2)
a. Stress-strain relationship c¢. Failure contour for n = 0.25
b. Normal and transverse stresses d. Determination of the factor ¥}
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So a strict application of Mohr's circles leads to a criterion which is very
alike the linear relationship between compression and shear which follows
from the assumptions of Coulomb, whereas the strength in tension is the
same as in shear, just as Coulomb also suggested (Timoshenko 1953).
The usual interpretation however — designated as 'Mohr-Coulomb' with
the traditional tension cut-off — has become meaningless in this approach.
In the lattice model the same formula can be used when the stresses
and strength are replaced by the forces N, Q and F¢ , see fig. 3d. In the
calculation of a model the resulting force Fj in each member is compared
with its value at failure Fy ;. The ratio between the two is designated as:

9. = il 100 % = N 100 % (10)
' Fu,i Nu,i
So it is sufficient to determine the extreme values of N for each member:
Lm0+ aage -n)
Nia=75F 5 (11)
tgp -1

6 Comparison with results from literature

In a 2D-model the behaviour is characterized by a basic configuration in
the shape of a triangle and in a 3D-model in the shape of a tetrahedron, see
fig 1b. Subjecting these configurations to external biaxial principal states
of stress gives failure contours which show all the essential features of the
failure contour according to Griffith for the 2D-model and of the failure
contour according to Kupfer for the 3D-model. In the last case external
triaxial states of principal stress can be applied just as easily to obtain a
complete failure surface (Beranek, Hobbelman 1993).

The essential step forward in describing failure is credited to the fact
that each biaxial state of stress is now resolved into three uniaxial stresses
and each triaxial state of stress into six uniaxial stresses. In the lattice
model these uniaxial stresses are represented by the resulting forces F,
acting along their thrustlines. These stresses — and their resulting forces —
have to be held responsible for failure as the bond between agregate and
matrix is the weakest point in concrete. So halfway each member the cri-
teria according to the formulas (9) and (11) are valid and only at these
cross sections the bond can be broken. The bending moment in the mem-
ber is only required to guarantee the correct boundary conditions halfway
the member. It has no meaning at the nodal points themselves. In a non
homogeneous state of external stress however, the value of the bending
moment will generally be unequal to zero at the governing cross section
and still has to be taken into account somehow.
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Lattices which are treated as trusses are hardly suitable to describe the be-
haviour of concrete. Not only is Poisson ratio equal to 1/3, but in a regular
lattice is the tensile strength just 1/3 of the compressive strength. Lattices
as proposed by Herrmann (1988) however, are an ideal starting point to
model concrete. Especially van Mier and co-workers have extensively
used such lattices, comparing the numerical results with their own test re-
sults. They claim an excellent agreement in crack development, but have
to admit a too brittle behaviour. They obtained the dimensions of their
members by curve fitting. In their approach the failure criterion is based
on elementary beam theory where cracks are supposed to occur as soon as
the extreme tensile stress, determined from o = N/A £ M/W, has
reached the tensile strength. It will be obvious that this formula may be
perfectly suited for steel or concrete frames, but not for the simulation of a
semi-continuum like concrete. So they introduced correction factors «
and f in their stress criterion and determined the numerical values by tun-
ing with test results. Their formula reads (Schlangen, van Mier 1992) :

Ny gt 12
;B AT W (12)
In tension plus shear they adopted the values a = 1/3 and = 2. The
question arises which link can be laid between their criterion given in (12)
and ours in (9). First of all, in a 2D-model with rectangular beams having
a cross section A = b X h ( b = width of the model), they have intro-
duced for the height of the beam element: # = 0,68 a (a = beam length).
Substitution of v* = 0.1 in (4) results in ¥ = 4/9, which in its turn
leads to # = 2/3%a according to (7b). As the geometry of the two grids is
practically the same, the mechanical behaviour should also be the same.
For a fair comparison the tensile strength in both models should be equal,
which leads to f=1in (12). In each homogeneous state of external stress
one finds M = Q*a/2. Equation (12) can further be rewritten by the fol-
lowing substitutions: Ac = Af; = Fy; W = 1/6%bh? ; a = 3/2%h. This
leads to a failure criterion which is expressed in N, Q and Fy:

3
F,=Nz3a 30 (12a)

In fig. 4 the criterion according to (12a) is shown for ¢ = 1/3, which can
be interpreted as critical cross sections on distances of 1/3a from the
nodes. The failure criterion according to (9) is also expressed in N and Q:

Q=i\/Ft2—~(17+1)FtN +nN* (9a)

This failure contour is shown in fig. 4 for two values: = 1/9 (v* = 0.1)
and 17 = 1/4 (v* = 0.2). The straight lines according to van Mier give the
impression of a linear best fit curve for both hyperbolas.
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Fig. 4 Comparison of the failure criteria ~ Fig. 5 Triangular grid with
according to equation (9a) and (12a) orthogonal directions I and II

7 Calculation technique

Calculations have been carried out with a standard framework program
without applying any alterations. All the work has been concentrated on
pre-, inter- and post-processing. For 2D-models only regular triangular
lattices have been applied, whith one of the two orthogonal main direc-
tions parallel to the axis of the model, see fig. 5. All calculations are car-
ried out for a prescribed external load or a prescribed displacement and
calculations are basically linear elastic. After the first calculation the ratio
¥ =Fj/ Fyi* 100 % is determined for all members of the grid. The
highest value Umax is selected and the external load or prescribed dis-
placement is multiplied with a factor 100 /Umax, which will just produce
failure in the most affected member of the lattice, whereas all other mem-
bers still are obeying the failure criterion. We find it most convenient to
reproduce all resulting forces F for each loading case into the failure cri-
terion, as it gives an exellent overview of the state of internal stress the
model is submitted to, see fig. 6¢. In the case of tension — with or without
shear — in the most affected member, brittle failure is assumed to occur
and the member should be removed from the grid. For practical reasons
the values of the cross sectional area A and the second moment of area /
are reduced to 0.001 % of their original value. Now the calculation is
started again with the slightly altered configuration of the grid and the
next member is determined in which the failure criterion is violated. The
whole procedure is repeated untill the load bearing capacity of the model
is exhausted. From the calculation a displacement is selected which is
governing the problem and plotted against the matching external load or
prescribed displacement. This leads to quite unusual load-displacement di-
agrams, see fig. 7. Contours can be drawn for increasing load or displace-
ment — hiding all the snap-backs — but the original plot of data gives con-
siderably more information about the degrading model.
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Most investigators apply lattice models on a meso scale (¢ = 1-10 mm)
and often random values are introduced for length, strength and stiffness
of the members of the grid. Attention is focussed on crack development
and load-displacement diagrams. The stress distribution is seldom shown.
We want to apply the model basically on a macro scale. The maxi-
mum member length is then governed by the minimum crack distance in
tension which one still wants to record, so member lengths of 50 mm and
more are quite common. This results in stylized crack patterns in which
nevertheless such phenomena as micro cracking, strain softening and ag-
gregate interlock are shown in a condensed way. A thorough analysis of
the mechanical behaviour however, requires a recording of the flow of
forces during the complete loading history of a model. This has been the
main reason to stick to complete regularity in the model. Only then a logi-
cal explanation of the phenomena wil be traceble, which otherwise might
remain hidden in the scatter of results. This is especially the case as long
as the failure criteria are still under investigation and numerical results
have to be compared with test results. In each loading step a visualization
of the forces between the spheres can be produced at wil, together with the
crack development, see fig. 6. Due to the regularity of the lattice, these
forces can be interpreted as uniaxial stresses in magnitude and direction.
To demonstrate the potential of the method, as wel as the limitations,
the results are shown of three uniaxial tensile tests on prismatic specimen.

In fig. 6a, b the axis of the specimen is parallel to a main direction I and in

fig. 6¢ parallel to a main direction II, see fig. 5. In fig. 6a the load is intro-

duced by rigid non rotatable loading platens, and in fig. 6b,c by rigid load-
ing platens which may rotate freely. Transverse displacements at the load-
ing platens, due to Poisson's ratio, are not prevented however.

For each specimen the following data are shown (for tg ¢ = 1/2):

1. 2. The forces F' between the spheres in magnitude and direction (shown
as direction and width of rectangular blocks) together with the loca-
tion of the cracks, shortly after the beginning of cracking and later.

3. The failure criterion with magnitude and direction of all forces Fi
between the spheres for the cases 1. and 2. Furthermore the crack
width for case 2. and the load displacement diagram with the location
of the loading cases 1. and 2.

Only a small part in the middle of the specimen is shown where the cracks

are developing. As the figures are rather small, the shape of the spheres is

not shown and only the gridlines are reproduced. Tensile forces are shown
in black, compressive forces in grey and cracks by smal longer rectangles
perpendicular to the grid. Due to the pronounced directions of the grid
and the external load, some phenomena are dominant present in one figure
but completely absent in another one. A carefull study of the subsequent
loading cases is most enlightening. It explains the mechanical behaviour
of the specimen and confirms observations from tests (Hordijk 1991).
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Fig. 6 Axial tension of a prismatic specimen (description previous page)
a. Non rotatable loading platens; b. c. Rotatable loading platens
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To enforce crack formation in the middel part of the specimen and not at
the loading platens, one member along the edge has been given a reduced
tensile strength of 90 %. In fig. 6a all forces in the undisturbed region are
almost parallel to the axis of the specimen. Plane sections remain plane
but forces in pure tension are much larger than forces in tension + shear,
causing alternating bands of high and low forces, see fig. 6al. Crack for-
mation starts with micro cracking, i.c. non through going cracks, as the
slightly loaded members are capable of taking over the load from the
cracked members in pure tension. The position of the grid is stimulating a
diagonal band of micro cracks over the whole width of the specimen be-
fore a through going crack is starting from left to right, subsequently con-
necting the individual micro cracks. The statically indeterminate boun-
dary conditions are causing a transverse shift of the original axial load.

In fig. 6b the specimen remains axially loaded at the boundaries, but
this implies that a cracked cross section has to transmit a resultant tensile
force as well as a bending moment. In the undisturbed region the phe-
nomena are similar to those in fig. 6a, but now there is only a slight
amount of micro cracking. Already after the second micro crack a macro
crack is starting to develop. The crack path is not longer fully determined
by the diagonal grid band as in fig. 6a, but it goes on zig-zagging, basical-
ly perpendicular to the free uncracked edge. Note also the forces at the
crack tip, one of them reaching the tensile strength, the almost stress free
edges in fig. 6b1 and the considerable compressive forces in fig. 6b2.

In fig. 6¢ the boundary conditions are the same as in fig. 6b, but as the
direction of the grid has changed, all members in tension must also trans-
mit shear forces, which causes small compressive forces in tranverse di-
rection. The possibility of micro cracking with a gradual redistribution of
forces now has completely vanished. The first tensile crack is appearing
at a much higher external load than in the previous cases, just as an ele-
mentary calculation predicts. But the drop in loading capacity after the
appearance of the first crack is also much greater than in the previous
cases. The crack can now easily follow a horizontal band, but the stress
distribution around the crack tip and at the free edge is quite similar to that
of the previous case, compare fig. 6¢2 with fig. 6b2.

8 Crack development in compression plus shear

In compression plus shear the idea of brittle breaking beams must be aban-
doned and a more ductile behaviour is required, as a slowly degrading
structure still can support inereasing loads. A completely cracked and dis-
rupted specimen wil even be capable to support large loads if it is under
triaxial compression. So it seems reasonable to maintain the normal stiff-
ness EA and adapt only the bending stiffness E/ of the members.
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The degrading qualities of the concrete can be taken into account fourfold,
(Beranek, Hobbelman 1994 b). As the chosen structure of the model is too
coarse to describe complete disrupture, a non linear stress-strain relation-
ship could be introduced . Furthermore every time the failure criterion is
violated in a member, the value of ET is stepwise reduced whereas at the
same time the tensile strength Fi in the failure contour for that member is
also stepwise reduced. This means that at last the cohesion in the failure
contour will become zero and a condition of pure friction remains. Finally
a compression cut-off (crushing cut-off) can be implemented.

The behaviour of the concrete is varying from very brittle to ductile,
depending of the way these reduction factors are chosen. At the moment
the best way seems to compare the numerical results of various combina-
tions with test results and make a pragmatic choise. In fig. 7 some first re-
sults are shown of a square specimen under axial compression in direction
I of the grid. First of all the bond is broken in all horizontal members
which are under tension. After that the load will increase and failure in
mode II is starting. At first sight the stress distribution has hardly changed,
but the two outer parts of the specicmen are shearing off as can easily be
deducted from the crack pattern (mode I in black and mode II in grey).
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9 Conclusions

The structure of concrete has been introduced as a regular assemblage of
equal spheres. Calculations are carried out on an equivalent two or three-
dimensional grid (lattice). With a failure contour for one bond between
two spheres as a basis, the model is capable of automatically producing a
three dimensional failure surface for bi- and triaxial stress conditions.

The mechanical behaviour is shown in a condensed and stylized way,
but phenomena as micro-cracking with its subsequent tension softening;
discrete macro cracking in whatever direction and aggregate interlock are
easily recognised. Due to the introduced visualization techniques the flow
of forces is easily understandable.

Discrete crack formation in mode I and II can be realized in a realistic
physical way and load displacement diagrams can be brought into agree-
ment with test results. Further research is required however, especially in
uniaxial compression when gridlines are parallel to the axis of a specimen.
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