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Abstract 
gradient-enhanced smeared crack model is utilised element 

simulations of and reinforced concrete. It is rooted a plasticity 
concept and uses a Rankine failure dependent on an equivalent 

strain measure, as well as on Laplacian. loss of well-
posedness of boundary value at the onset 
avoided, and finitely sized fracture process zones are .._, ............ A,.A,._,, ...... 

Edge-Notched concrete specimen loaded in a combination tension and 
shear is analysed the results are verified against the experimental data. 
A reinforced concrete bar uniaxial tension is calculated to evaluate 
regularising on reinforced concrete structures. 

1 

a proper judgement of the structural safety of a system it is necessary 
to assess the danger of a sudden (brittle) failure after attaining limit 
load. Structural concrete exhibits a softening behaviour due to non­
homogeneous deformations resulting from cracking, & Hegemier 
(1984). Therefore, there exists a demand for reliable computational meth-

capable of reproducing the post-peak behaviour. 
Classical, local constitutive models embody the AAAA·~~~~ assumption 
the deformation of the specimen varies in a smooth man-

ner. This is not the case when strain ... ..., .............. u ........... './ 

871 



cracks develop during fracture). Nevertheless, a variety of smeared crack­
ing, plasticity or damage based strain softening models exist, which fea­
ture a descending relation between stress and strain. The mathematical 
implication of such a constitutive relation within the classical continuum 
description is the loss of well-posedness of a given boundary value prob­
lem. The consequence numerical simulations is a pathological discreti­
sation sensitivity (e.g., Sluys, 1992). 

overcome this difficulty one can concentrate the damage evolution 
a discontinuity (e.g. introduce discrete cracks between continuous parts 

of a concrete structure). Macroscopic cracking of concrete can then be re­
produced, provided one knows the distribution of cracks in advance, Rots 
(1988), or performs frequent remeshing, Larsson & Runesson (1992). 
Otherwise a regularisation method must be applied within the continuum 
description in order to define the size of the localisation band or fracture 
process zone, de Borst et al. (1994), Willam et al. (1994), Pijaudier-Cabot 
et (1994). An intermediate solution, which removes the spurious mesh 
sensitivity from the load-displacement diagrams, is to treat the fracture en­
ergy as a material constant and to relate the softening modulus to the finite 
element size, cf. Pietruszczak & Mroz (1981), Bafant & Oh (1983), 
Willam (1984). 

the plasticity based smeared cracking model used here we adopt an 
enhanced continuum concept and define the failure surface as dependent 
on second-order spatial gradients of an inelastic strain measure. The gra­
dient-dependent plasticity theory, cf. Aifantis (1984), Vardoulakis & 

(1991), Mtihlhaus & Aifantis (1991), de Borst & Mtihlhaus 
(1992), Parnin (1994), preserves well-posedness of the boundary value 
problem during strain localisation and therefore spurious discretisation 
sensitivity of numerical results is avoided. The theory includes an addi­
tional parameter - the internal length scale, which is related to the width of 

fracture band. 
this paper we focus on phenomenological modelling and the meso­

scale effects of cracking are incorporated in a macroscopic constitutive 
model via the gradient dependence. For simplicity we adopt the strong as­
sumptions of isotropy and a homogenised continuum. We use the gradi­
ent-dependent maximum principal stress (Rankine) failure surface and 

our consideration to the behaviour of concrete in plane stress tension 
and tension-shear. For a Double-Edge-Notched (DEN) concrete specimen 
a quantitative comparison with the experimental results has been carried 
out. 

problem of localisation and mesh sensitivity of numerical results 
is often thought to relate only to plain concrete. Nevertheless, problems al­
so exist for reinforced concrete when cracking is modelled using standard 
continuum models, since the crack spacing in then undefined. To investi­
gate the possible beneficial effects of adding spatial gradients to the 
smeared crack model a reinforced concrete specimen in uniaxial tension is 
analysed. 
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2 Plasticity-based smeared crack model 

The gradient-dependent plasticity theory is used to simulate continuum 
fracture, cf. de Borst et al. (1992), Parnin & de Borst (1994). Although 
plasticity is a more natural constitutive description for metals and soils, it 
enables modelling of the characteristic features of quasi-brittle (cementi­
tious) materials under monotonic loading conditions, Feenstra ( 1993). In­
capability of reproducing the elastic stiffness degradation cannot be ac­
cepted for cyclic loading, for which a damage theory, see e.g. Pijaudier­
Cabot et al. (1994 ), or a combination of damage and plasticity, see e.g. 
Larsson & Runesson (1994), is more appropriate. It is also noted that the 
isotropic softening plasticity model is not correct for concrete cracking, cf. 
Feenstra (1993), since in reality the emergence of a crack does not reduce 
the local material strength in all directions, but only in the direction per­
pendicular to the crack. However, here we focus attention on the role of 
the gradient regularisation in enhancing the classical smeared cracking 
model and we accept these limitations. 

The maximum principal stress (Rankine) criterion, adopted as a condi­
tion of continuum fracture, is formulated here for the plane stress case: 

(1) 

where <:51 is the maximum principal stress and a-g is the gradient dependent 
fracture strength. For this fracture criterion the equivalent inelastic strain 
rate k is defined as the absolute value of the maximum principal inelastic 
strain rate£~. 

The Rankine failure surface for plane stress conditions possesses aver­
tex av= (a-, a-, 0) in the space ( <:5 x , <:5y , <:5 .xy ). For classical plasticity algo­
rithms the presence of vertices in yield !unctions involves already some 
extra difficulties, cf. Koiter (1953), de Borst (1987), Simo et al. (1988). 
The situation is different in the gradient plasticity algorithm, where the 
plastic multiplier is discretised. A possible, but expensive solution is to 
introduce the discretisation of more than one plastic multiplier the ele­
ment formulation and penalise all of them but one to zero, unless the ver­
tex regime is entered. The second approach, followed in this paper, is to 
apply a smooth approximation of the original failure function, Parnin 
(1994). 

Next, we consider some gradient-dependent softening rules. We intro­
duce a nonlinear softening rule 

(2) 

in which 0-(K) is a given exponential softening rule (e.g. as in 1) and 
g(K) is a given gradient influence function. We assume that 0-g ~ 0. The 
softening function according to Hordijk ( 1991), formulated onginally in 
the context of discrete cracking under uniaxial tension, has been adapted 
here to the continuum format using the relation: 

~f = J crdt:= J iTdK, (3) 
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w= 

w 

K 

1. 

where Gf is 
between w 

uniaxial ~....,A._. ... A''-'AA• de Borst 
the relation "' 0

'"""'"''""',,.., gradient influence variable g, the '-'"'"'-'·"''-'"''"' ..... .11. AA~,,~-'AA 
ing modulus if' length scale l, found for the analytical 
linear softening, to case of nonlinear softening 

g(K)=-l2if'(K), 

with l constant and < 0, Parnin (1994). The gradual failure 
grain bridges produce the residual carrying capacity of concrete, 
van Mier (1991), suggests that the gradient influence should decrease 

increase of accumulated fracture strain. This leads to 
gradient-dependent softening rule: 

ifg(K, V2
K) = + Z2if'(K)V2K . cs> 

The simplest case is to assume softening (h =a' = constant) a 
constant coefficient g: 

ifg(K, V2
K) = O"y + gV2 K . (6) 

The yield strength eq. (2) is composed 
contributions. contribution -g(K)V2K is positive 
dle of the localisation band, giving additional carrying capacity to the 
client-dependent material in this area, i.e. even if a- equals zero, 
strength if g is larger zero. The case of a negative gradient ....,..., ......... ,,.., ..... 
tion occurs at elastic-plastic boundary, making it possible for local-
isation zone to since the elastic elements close to the elastic-plastic 
boundary have an reduced yield strength. These modifications of 
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are essence 

3 

'-VJU"UJl.'-''JU is even stronger rHJl::>1'"'.c>C''l"1'n'""l <:l'!"Orl 

the area and l"VU,P1'"'i::>•Cf-1m'J1f-1 
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Double-edge-notched concrete specimen with discretisation. 

presence of lateral compression. On the other hand, the character 
of the experimental curves is correctly reproduced and the results are close 
to experiments for progressive softening. 

The simulated fracture process zones are compared in Fig. 4 with the 
average experimental crack positions, i.e. an average of the experimental 
crack locations at and back of specimen is plotted. The agree-

and no bias of mesh lines is found as was the case 
cf. Nooru-Mohamed (1992). It is 

noted case max central zone of gradient plasticity el-
ements to be extended over the area 40 ::; y ::; 160 in order to admit the 

'crack' propagation. the case = 5kN two fracture zones 
the notches finally for other cases the width of 
strut is estimated correctly. The width of the fracture 

to assumed value w = 2nl = 12. 6mm. 
localisation stress-strain relation is only a nomi-

effects (like size effect) have to be reflected. 
context of concrete fracture, that the deterministic 

v.1.vu.:>v of stored elastic energy - is much more 
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to the randomness of the 
contradiction to the classical mod­
deterministic size effect since the 
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Fig. 3. Computed 
displacement 

In the second series 

=5 

equal shear and tensile Fig. 
diagrams for the relation stress Pl(tL0 ), where is 

load carrying length 37 .Smm for the three respec-
tive specimen sizes, (o/L). For the smaller 
specimens two possibilities considered: a changing internal 
l = 1/0. Smm (so that a constant internal length l = 

all cases the fracture same. 
As can be seen of the length can Jl .... .11.,, ..... ...,,, .. ..,..., 

the predicted length is decreased together 
with the specimen size, two are predicted for three specimens. 

internal length is kept constant, we find just one fracture zone for 
............ ,~_................... and small specimen. It is noted that in experiments both 
crack patterns, distributed cracks, were observed 
series of medium and Fig. 5 we observe, 
choice of the internal the softening behaviour. 
cal size effect is peak-stress value and the 
regime although a reversed size effect was 
path-6 tests. Since an scale is incorporated numeri-
cal model, predicted need not be a power law and our 
results correspond to the nonlinear elastic fracture mechan-
ics, cf. Bazant (1992), ( 
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following and material data have been used: 
L = 100 mm, E =20000 N/mm2 

Nlmm2 500 N/mm2 for 
embedded ~---··'"'+"' .... """....,,... 

steel rod and 
eight-noded 
1 E and length l = 5 mm are 

localisation zone w = 31. 4 mm). To .U.JUl ............ ....., 

...... "' ...... .....,, .......... ,....,~ a small imperfection (reduced value 
centre of the bar. We have obtained the 
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5. Nominal tensile stress versus average tensile 
the size on the peak-stress (path 6). 
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6. Contour plots of equivalent fracture strain for smallest speci-
men and different internal length values: l = 0. 5mm (left) 
l = 2mm (right). 

Fig. 7. Reinforced concrete bar in pure tension. 

deformation diagrams and inelastic strain distributions 
ment ratios, µ = 0. 5, 1. 0, 2. 0%, see 8, as well as 
inforcement. 

The stabilising influence of the reinforcement is 
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Fig. 8. Load-displacement diagrams for different reinforcement ratios 
and the fracture strain distributions in the bar at u = 0. 03 mm. 

for µ = 5% a localized fracture zone is still possible. For plain concrete 
stresses along the bar are constant, for reinforced concrete the stresses 

fracture zone are transferred to the reinforcement, but outside of this 
zone stresses are constant. The response of the numerical model is dif­
ferent the bond slip is taken into account. The crack formation is associ­
ated with a slip and stress redistribution between concrete and steel. At a 
distance from the primary crack the stresses mobilise and violate the 
cracking criterion again. 

This is illustrated using a numerical model with 80 gradient plasticity 
elements for concrete, 80 interface elements which reproduce the bond 
slip law of Dorr (1980) and 80 truss elements for steel. The imperfection 
in now placed at the left end of the bar and nonlinear softening with the 
timate inelastic strain Ku= 0. 006 is assumed. For the reinforcement ratio 
µ = 2. 0% and two values of the internal length we have obtained the in­
elastic strain distributions in Fig. 9. For l = 3mm we observe two discrete 
cracks and for l = 5mm we have a zone of distributed fracture. Fig. 10 pre­
sents the evolution of the stress distributions in the reinforcement and the 
interface for l = 3mm. 

These results show that localisation and formation of multiple discrete 
cracks can occur even for strongly reinforced concrete. However, the re­
sults do not seem to be sufficient to support the conclusion of Sluys ( 1994) 
and Brioschi (1994 ), obtained in wave-propagation tests, that the internal 
length scale determines the crack spacing. To verify this a longer bar must 
be analysed and a careful parametric study must be carried out, since a 
number of factors (e.g. reinforcement ratio, bond strength and softening 
diagram) may influence the results. 
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9. Evolution of the fracture strain in the bar for two values 
internal length l = 3mm and l = 5mm (u = o~o. 02mm). 
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10. Evolution of stresses reinforcement (left) and 
the interface (right) for l 3mm (u = o~o. 02mm). 

5 Final remarks 

In this paper the applicability of a gradient-enhanced smeared crack 
for plain and reinforced concrete has been scrutinised. The ~,. .. ., . ., 
plasticity approach includes a regularising dependence of the 
tion on higher-order spatial derivatives of an inelastic strain measure 
therefore the boundary value problem for a softening continuum 
well-posed in the post-peak regime. 

We have shown that the crack model based on Rankine ,:;;;. ....... uc ...... ,..,.~ 
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