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Abstract

A gradient-enhanced smeared crack model is utilised in finite element
simulations of plain and reinforced concrete. It is rooted in a plasticity
concept and uses a Rankine failure surface dependent on an equivalent
fracture strain measure, as well as on its Laplacian. The loss of well-
posedness of the boundary value problem at the onset of localisation is
avoided, and finitely sized fracture process zones are obtained. A Double-
Edge-Notched concrete specimen loaded in a combination of tension and
shear is analysed and the results are verified against the experimental data.
A reinforced concrete bar in uniaxial tension is calculated to evaluate the
regularising influence on reinforced concrete structures.

1 Introduction

For a proper judgement of the structural safety of a system it is necessary
to assess the danger of a sudden (brittle) failure after attaining the limit
load. Structural concrete exhibits a softening behaviour due to non-
homogeneous deformations resulting from cracking, Read & Hegemier
(1984). Therefore, there exists a demand for reliable computational meth-
ods capable of reproducing the post-peak behaviour.

Classical, local constitutive models embody the implicit assumption
that the deformation of the specimen varies in a sufficiently smooth man-
ner. This is not the case when strain localisation occurs (e.g., when macro-
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cracks develop during fracture). Nevertheless, a variety of smeared crack-
ing, plasticity or damage based strain softening models exist, which fea-
ture a descending relation between stress and strain. The mathematical
implication of such a constitutive relation within the classical continuum
description is the loss of well-posedness of a given boundary value prob-
lem. The consequence in numerical simulations is a pathological discreti-
sation sensitivity (e.g., Sluys, 1992).

To overcome this difficulty one can concentrate the damage evolution
in a discontinuity (e.g. introduce discrete cracks between continuous parts
of a concrete structure). Macroscopic cracking of concrete can then be re-
produced, provided one knows the distribution of cracks in advance, Rots
(1988), or performs frequent remeshing, Larsson & Runesson (1992).
Otherwise a regularisation method must be applied within the continuum
description in order to define the size of the localisation band or fracture
process zone, de Borst et al. (1994), Willam et al. (1994), Pijaudier-Cabot
et al. (1994). An intermediate solution, which removes the spurious mesh
sensitivity from the load-displacement diagrams, is to treat the fracture en-
ergy as a material constant and to relate the softening modulus to the finite
element size, cf. Pietruszczak & Mréz (1981), Bazant & Oh (1983),
Willam (1984).

In the plasticity based smeared cracking model used here we adopt an
enhanced continuum concept and define the failure surface as dependent
on second-order spatial gradients of an inelastic strain measure. The gra-
dient-dependent plasticity theory, cf. Aifantis (1984), Vardoulakis &
Aifantis (1991), Miihlhaus & Aifantis (1991), de Borst & Miihlhaus
(1992), Pamin (1994), preserves well-posedness of the boundary value
problem during strain localisation and therefore spurious discretisation
sensitivity of numerical results is avoided. The theory includes an addi-
tional parameter - the internal length scale, which is related to the width of
the fracture band.

In this paper we focus on phenomenological modelling and the meso-
scale effects of cracking are incorporated in a macroscopic constitutive
model via the gradient dependence. For simplicity we adopt the strong as-
sumptions of isotropy and a homogenised continuum. We use the gradi-
ent-dependent maximum principal stress (Rankine) failure surface and
limit our consideration to the behaviour of concrete in plane stress tension
and tension-shear. For a Double-Edge-Notched (DEN) concrete specimen
a quantitative comparison with the experimental results has been carried
out.

The problem of localisation and mesh sensitivity of numerical results
is often thought to relate only to plain concrete. Nevertheless, problems al-
so exist for reinforced concrete when cracking is modelled using standard
continuum models, since the crack spacing in then undefined. To investi-
gate the possible beneficial effects of adding spatial gradients to the
smeared crack model a reinforced concrete specimen in uniaxial tension is
analysed.
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2 Plasticity-based smeared crack model

The gradient-dependent plasticity theory is used to simulate continuum
fracture, cf. de Borst et al. (1992), Pamin & de Borst (1994). Although
plasticity is a more natural constitutive description for metals and soils, it
enables modelling of the characteristic features of quasi-brittle (cementi-
tious) materials under monotonic loading conditions, Feenstra (1993). In-
capability of reproducing the elastic stiffness degradation cannot be ac-
cepted for cyclic loading, for which a damage theory, see e.g. Pijaudier-
Cabot et al. (1994), or a combination of damage and plasticity, see e.g.
Larsson & Runesson (1994), is more appropriate. It is also noted that the
isotropic softening plasticity model is not correct for concrete cracking, cf.
Feenstra (1993), since in reality the emergence of a crack does not reduce
the local material strength in all directions, but only in the direction per-
pendicular to the crack. However, here we focus attention on the role of
the gradient regularisation in enhancing the classical smeared cracking
model and we accept these limitations.

The maximum principal stress (Rankine) criterion, adopted as a condi-
tion of continuum fracture, is formulated here for the plane stress case:

F=0,-54(x,Vx), (1)

where o is the maximum principal stress and G, is the gradient dependent
fracture strength. For this fracture criterion the equivalent inelastic strain
rate K is defined as the absolute value of the maximum principal inelastic
strain rate £".

The Rankine failure surface for plane stress conditions possesses a ver-
tex o, =(0,5,0) in the space (o, , 0y,0 ). For classical plasticity algo-
rithms the presence of vertices in yield Fanctions involves already some
extra difficulties, cf. Koiter (1953), de Borst (1987), Simo et al. (1988).
The situation is different in the gradient plasticity algorithm, where the
plastic multiplier is discretised. A possible, but expensive solution is to
introduce the discretisation of more than one plastic multiplier in the ele-
ment formulation and penalise all of them but one to zero, unless the ver-
tex regime is entered. The second approach, followed in this paper, is to
apply a smooth approximation of the original failure function, Pamin
(1994).

Next, we consider some gradient-dependent softening rules. We intro-
duce a nonlinear softening rule

Gy(x, Vi) =6(x) - g(x)Vk | (2)

in which 6(x) is a given exponential softening rule (e.g. as in Fig. 1) and
g(x) is a given gradient influence function. We assume that &, >0. The
softening function according to Hordijk (1991), formulated originally in
the context of discrete cracking under uniaxial tension, has been adapted
here to the continuum format using the relation:

ﬁzjads::j&dx, 3)

w
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Fig. 1. Nonlinear softening rule for concrete Mode-I fracture, cf. Hordijk
(1991).

where Gy is the fracture energy and w is the crack band width. The rela-
tion between w and the internal length [ is assumed to be similar to the
uniaxial analytical solution, de Borst & Miihlhaus (1992). We generalise
the relation between the gradient influence variable g, the classical harden-
ing modulus &’ and the length scale [, found for the analytical solution and
linear softening, to the case of nonlinear softening

gx)=—1*5"(x), )

with [ constant and 6’ <0, Pamin (1994). The gradual failure of crack
grain bridges which produce the residual carrying capacity of concrete,
van Mier (1991), suggests that the gradient influence should decrease with
the increase of the accumulated fracture strain. This leads to the following
gradient-dependent softening rule:

G,(x,VK) = 6(x)+ 126" (k)Vk . (5)

The simplest case is to assume linear softening (2=6" = constant) and a
constant gradient influence coefficient g:

G,(x, V2K’) =0y +hx — szic . (6)

The gradient-dependent yield strength in eq. (2) is composed of two
contributions. The gradient contribution —g(x)V“x is positive in the mid-
dle of the localisation band, giving additional carrying capacity to the gra-
dient-dependent material in this area, i.e. even if & equals zero, the yield
strength G, 1s larger than zero. The case of a negative gradient contribu-
tion occurs at the elastic-plastic boundary, making it possible for the local-
isation zone to spread, since the elastic elements close to the elastic-plastic
boundary have an apparent reduced yield strength. These modifications of
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the standard yield strength &(x) are the essence of the gradient regularisa-
tion.

3 Fracture of the DEN-specimen

Fig. 2 shows the configuration of a mixed-mode concrete fracture test,
analysed experimentally by Nooru-Mohamed (1992). The Double-Edge-
Notched specimen was placed in a special loading frame that allowed for
the analysis of various loading paths of combined shear and tension under
force or deformation control. We have analysed two of the loading paths
considered by Nooru-Mohamed (1992) using the gradient-enhanced
smeared crack model.

Three specimen sizes (L X L) were used in the experiments: 200x200,
100x100, 50x50mm. The sizes of symmetrical notches were 25x5,
12.5%5 and 6.25x5mm, respectively, and the specimen thickness was for
all cases t =50mm. The material data used in numerical simulations are as
follows: Young’s modulus £ =30000 N/mmz, Poisson’s ratio v=0. 0, ten-
sile strength f,=3.00 N /mm?, fracture energy Gy=0.10 N/mm. The non-
linear softening rule from Fig. 1 and the internal length [=2mm
(k,=0.0136) have been assumed.

In Fig. 2 we have presented the geometry of the specimen 200x200mm
and the finite element mesh used in the calculations. The central zone of
refined mesh (50 £ y £ 150) is composed of eight-noded gradient plastici-
ty elements (quadratic interpolation of displacements and hermitian inter-
polation of the plastic multiplier) and the coarse mesh zones at the top and
at the bottom are discretised with standard serendipity elements. Addi-
tional boundary conditions for the plastic multiplier field are enforced on
the boundaries of the fine mesh and the respective displacements are tied
on the remeshing lines to preserve the displacement continuity.

The specimen in Fig. 2 is used in the first series of simulations. Ac-
cording to path 4 from the experiment, the shear force is applied under
force control and then kept constant, while the normal loading is imposed
under displacement control of the normal deformation in the fracture zone
0 (averaged value measured between the points A and A’ as well as be-
tween B and B’). In the second series all three sizes are analysed to verify
the size effect. To obtain a monotonic increase of loading, the shear and
tension are applied simultaneously under the control of the horizontal and
vertical displacements pg and p with the condition p= p,. It is noted that
this deformation control is only a numerically convenient approximation
of the real case, since in the experiment (path 6) the relative shear defor-
mation between the upper and lower half of the specimen &, (measured at
the points S and S°) and § were used to control the loading.

Fig. 3 shows the experimentally determined and numerically simulated
relations between the tensile load P and the normal displacement §. The
calculated maximum shear load P, =29.7kN is larger than the experi-
mental value (about 27.5kN) and the ultimate carrying capacity under sub-
sequent tension is even stronger overestimated, which is attributed to the
stress locking in the notch area and overestimation of the cracking stress in
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Fig. 2. Double-edge-notched concrete specimen with discretisation.

the presence of the lateral compression. On the other hand, the character
of the experimental curves is correctly reproduced and the results are close
to experiments for progressive softening.

The simulated fracture process zones are compared in Fig. 4 with the
average experimental crack positions, i.e. an average of the experimental
crack locations at the front and back of the specimen is plotted. The agree-
ment is reasonable and no bias of the mesh lines is found as was the case
in the smeared cracking simulations, cf. Nooru-Mohamed (1992). It is
noted that for the case with P, the central zone of gradient plasticity el-
ements had to be extended over the area 40 < y < 160 in order to admit the
inclined ‘crack’ propagation. For the case P,=5kN two fracture zones
developing from the notches finally join, for the other cases the width of
the compressive strut is estimated correctly. The width of the fracture
zones corresponds well to the assumed value w=27/=12. 6mm.

In the presence of localisation the stress-strain relation is only a nomi-
nal property and structural effects (like the size effect) have to be reflected.
It has been shown in the context of concrete fracture, that the deterministic
size effect - due to the release of the stored elastic energy - is much more
important than the probabilistic size effect, due to the randomness of the
material strength, cf. Bazant (1992). In contradiction to the classical mod-
els we are capable of reproducing the deterministic size effect since the
length parameter is incorporated in the theory.
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Fig. 3. Computed and experimental tensile force versus average normal
displacement diagrams (path 4).

In the second series of calculations we have applied simultaneously
equal shear and tensile deformation (path 6). Fig. 5 shows the calculated
diagrams for the relation between the nominal stress P/(tLy), where L is
the load carrying length equal to 150, 75 and 37.5mm for the three respec-
tive specimen sizes, and the average normal strain (6/L). For the smaller
specimens two possibilities are considered: a changing internal length
1=1/0.5mm (so that /L =0.01) and a constant internal length [=2mm.
For all cases the fracture energy Gy is the same.

As can be seen in Fig. 6 the choice of the internal length can influence
the predicted fracture mode. If the internal length is decreased together
with the specimen size, two cracks are predicted for all three specimens. If
the internal length is kept constant, we find just one fracture zone for the
medium and small specimen. It is noted that in the experiments both
crack patterns, distributed and with dominant cracks, were observed in the
series of medium and small specimens. From Fig. 5 we observe, that the
choice of the internal length influences the softening behaviour. A classi-
cal size effect is found both in the peak-stress value and the post-peak
regime although in the experiment a reversed size effect was found for
path-6 tests. Since an internal length scale is incorporated in the numeri-
cal model, the predicted size effect law need not be a power law and our
results correspond to the predictions of nonlinear elastic fracture mechan-
ics, cf. Bazant (1992), Reinhardt & OzZbolt (1994).
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Fig. 4. Contour plots of equivalent fracture strain for the three lateral
confining load levels (from the top P, =35, 10, P .¢)-

4 Cracking of the RC tensile bar

We analyse numerically the reinforced concrete bar in tension shown in
Fig. 7. The following geometrical and materlal data have been used: length
of the bar L =100 mm, E =20000 N/mm and f, =2 N/mm?® for concrete,
E =210000 N/mm?* and oy =500 N/mm? for the steel (ideal plasticity).
First, we have adopted the embedded reinforcement formulation, in
which the deformations of the steel rod and the concrete matrix are equal,
i.e. full bond is assumed. Eighty eight-noded gradient plasticity elements,
linear softening modulus 2#=—0.1 E and internal length /=5 mm are used
(resulting in a width of the localisation zone w=31.4mm). To initiate
cracking we have introduced a small imperfection (reduced value of the
fracture strength) in the centre of the bar. We have obtained the load-
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Fig. 5. Nominal tensile stress versus average tensile strain diagram and
the size effect on the peak-stress (path 6).
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Fig. 7. Reinforced concrete bar in pure tension.

deformation diagrams and inelastic strain distributions for three reinforce-
ment ratios, £=0.5,1.0,2.0%, see Fig. 8, as well as the case with no re-
inforcement.

The stabilising influence of the reinforcement is clearly observed, but
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Fig. 8. Load-displacement diagrams for different reinforcement ratios
and the fracture strain distributions in the bar at 7z =0. 03mm.

for £=0.5% a localized fracture zone is still possible. For plain concrete
the stresses along the bar are constant, for reinforced concrete the stresses
in the fracture zone are transferred to the reinforcement, but outside of this
zone the stresses are constant. The response of the numerical model is dif-
ferent if the bond slip is taken into account. The crack formation is associ-
ated with a slip and stress redistribution between concrete and steel. At a
distance from the primary crack the stresses mobilise and violate the
cracking criterion again.

This is illustrated using a numerical model with 80 gradient plasticity
elements for concrete, 80 interface elements which reproduce the bond
slip law of Dorr (1980) and 80 truss elements for steel. The imperfection
in now placed at the left end of the bar and nonlinear softening with the ul-
timate inelastic strain x, =0.006 is assumed. For the reinforcement ratio
4 =2.0% and two values of the internal length we have obtained the in-
elastic strain distributions in Fig. 9. For / =3mm we observe two discrete
cracks and for I =5mm we have a zone of distributed fracture. Fig. 10 pre-
sents the evolution of the stress distributions in the reinforcement and the
interface for [ =3mm.

These results show that localisation and formation of multiple discrete
cracks can occur even for strongly reinforced concrete. However, the re-
sults do not seem to be sufficient to support the conclusion of Sluys (1994)
and Brioschi (1994), obtained in wave-propagation tests, that the internal
length scale determines the crack spacing. To verify this a longer bar must
be analysed and a careful parametric study must be carried out, since a
number of factors (e.g. reinforcement ratio, bond strength and softening
diagram) may influence the results.
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Fig. 9. Evolution of the fracture strain in the bar for two values of the
internal length [ =3mm and [ =5mm (i1 =0—0. 02mm).
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Fig. 10. Evolution of stresses in the reinforcement (left) and tractions in
the interface (right) for [ =3mm (1= 0—0. 02mm).

5 Final remarks

In this paper the applicability of a gradient-enhanced smeared crack mode
for plain and reinforced concrete has been scrutinised. The employed
plasticity approach includes a regularising dependence of the failure func-
tion on higher-order spatial derivatives of an inelastic strain measure and
therefore the boundary value problem for a softening continuum remains
well-posed in the post-peak regime.

We have shown that the crack model based on Rankine gradient plas-
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ticity may be successfully applied in the analysis and prediction of con-
crete fracture phenomena. The model reproduces the experimentally ob-
served structural response. The results of finite element simulations are
almost insensitive to mesh refinement or alignment, since the width of the
fracture process zones is determined by the internal length incorporated in
the theory. The load-deformation diagrams for the DEN-specimen are
governed by the value of fracture energy and are not affected by the as-
sumed value of the internal length, unless its change results in a different
localisation mode. However, the model seems to be less accurate for this
mixed-mode fracture problem than for the pure Mode-I cases, cf. Pamin
(1994). The localisation limiting properties of the gradient enhancement
make the results physically appealing, although the curved shape of the
experimentally observed cracks has not been reproduced satisfactorily.
The issue of modelling of localisation in reinforced concrete requires a
more extensive study, in which the effect of bond slip is of primary impor-
tance. In particular the use of a continuum theory equipped with an inter-
nal length parameter can make it possible to determine the crack spacing
and the minimum reinforcement ratio necessary to obtain distributed
cracking. It is also emphasised that the experimental or micromechanical
determination of the internal length scale (or rather a set of length scales
for different stress states) for various materials is of primary importance.
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