
Fracture Mechanics of Concrete Structures, 
Proceedings FRAMCOS-2, edited by Folker H. Wittmann, 
AEDIFICATIO Publishers, D-79104 Freiburg (1995) 

COMPUTATIONAL ASPECTS OF FRACTURE 
LATTICE MODELS 

Schlangen 
Stevin Laboratory, Delft University Technology 
Delft, The Netherlands 

Abstract 
This paper deals with some basic techniques used in numerical UJL ....... ._..,., ..... ,.,..._,JJLAU 

of fracture with lattice models. influence of the element type and 
orientation on the fracture pattern is shown by simulating an experiment on 
a concrete plate subjected to shear loading. It was found that beam "" 1""'rnt::.•nt"c 

with three degrees of freedom per node, especially with a random 
of the beams in the lattice, give the best comparison with the ...,;,.~_,...,.._JUAJl""''LJl ... 
Yet, also the element size turned out to be important. A new 
is outlined which uses principal tensile stresses in each node of 
to determine the beam to break. implementation of 

the model a method is developed which uses digital images 
microstructure of a material. The crack patterns obtained from ..., ... JL .... ,,.. .. ...,..,.._,_,, ...... J 

on a lattice under a few basic loading conditions using 
very realistic. 

1 Introduction 

Heterogeneous materials have complicated fracture mechanisms, 
related to their microstructure. use of linear elastic fracture .._ ....... .,"" .................. ...,..., 
to analytically describe these mechanisms is very hard, since 
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crack, various branches, secondary cracks 
some more insight the problem the use of 

theoretical physics indicated 
quite successful frac-

naT·a~r":::.'e.·.~~.(,,_..__, materials, see, for instance, Herrmann and 
....... "", ...... ...,_ .. ..., were adopted for specific applications such as 

....,'V' .... ..., ........... ....,. see, instance, Bafant et (1990) or 
ceramics, see, for instance, Curtin and 

these models a material 
spring or beam elements 

fracture is realized by 
i. .......... JL...,.., under loading remov-

mesh exceeds a certain 

lattice models, how
chosen element 

the relation 
the heterogeneity of the 

as possible. 
fracture procedure of the 
techniques for the set of 
3 the differences in crack 

the element type, beam length and 
Furthermore the effect of various 

!--'"'""'""''- ...... .._, is presented. Also a short 
.......... , ................. .__, to implement disorder in the lattice 
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.......... Jl....,Jl .... solver becomes even larger for fracture 
""' ..... _._.._JlJlJl,..., an element thus removing it from the lattice is a 

........... 11--J""-'-'"''-' that the resulting changes in the deformation vector 
Therefore only a few iteration steps needed to 

the next element to remove. It should 
algorithm are necessary to converge to a...,.._,,_..,..,., _ __,._ ... 

""'-'JLU-1-'''-'-U . ....,.._ ... , .. IJ of the system matrix becomes 
example, when simulating a multi-phase composite one 

phase is the other phases. In that case preconditioning 
the matrix can help to speed up the process, Batrouni and (1988). 

When a direct solver is used complete system usually 
solved every an element is removed. However, in this case 
of structural variation could also be used, see Majid et al. (1978) Jirasek 
and Bafant (1994). method, the inverse of the matrix A is used to 
update the displacement vector when an element is removed mesh, 
so that a full-scale solution is not needed every time. This does a 
large amount of computer memory, since the inverse matrix must be stored. 
Although a lattice of beams the stiffness matrix is sparse, inverse of 
that not. For a general system of N nodes, inverse of 
A is can be enormous. Clearly, the method of structural 

..... .., .... ,..._ ........ only for small systems. 

JL:.IJU'll>:n .. Jn .... nioatun and criterion 
....,,.._ ..... ,_, ... _._...,moduli tensor for a regular triangular lattice of beams, 

isotropic, Feng et (1985), can easily be derived 
elastic energy of a unit cell of the lattice 

..., ......... ,"_,""" shear): 

J3EA 
bulk modulus : K = T l 

shear modulus: µ 
J3EA 
4 

121) 
+ Al2 

• fi, - µ (i - W) 
ratio : l/ = fi, + µ = ( 3 + ~~o 

1 
-l<v<-

3 

(6) 

(7) 

(8) 

elements with unit thickness the Poisson's is 

v _ ( 
1 

- (? n (9) 

- (3 + (~ )2) 
To simulate fracture a breaking rule must be defined. Different criteria 
for fracture have been adopted and can be found in the literature; see, 
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instance, Herrmann and Roux (1990), Schlangen (1993), Jagota and 
Bennison (1994), Beranek and Hobbelman (1994) and van Vliet and van 
Mier ( 1994). The main idea is that an of the lattice break when 
a predefined threshold for some quantity, for example tensile stress or elastic 
energy, is exceeded that element. 

stead of removing just one element, it can be decided to remove more 
elements from the lattice before relaxing the system again. can be a 
method to simulate dynamic in stead static loading. that case a 
relation has to be found between the of elements 
a step and the rate of loading. 

the simulations in section 3 of this each a is removed 
the lattice when: 

F 
- >ft 
A 

(10) 

where F is the normal tensile force 
area, and ft is the tensile strength of 

cross sectional 

a beam element is perfectly brittle. stress-strain 
element is plotted Fig. 1 c. After removing one 
is relaxed again. Yet, an error is 
will be discussed section 4. 

3 Element and mesh dependency 

3.1 Influence on 
lattice of springs or beams is a ........ ,_,..., ... ..., ...... .._, .......... ~ ..... 

ber of degrees of in the nodes 
continuum that is represented by the ....... .., .. JL,..,....,. 

behaviour 
....,.L ......... u- ..... of such an 

made of results of fracture simulation regular .................. ;..., .......... .. 
different kinds of elements. The experiment shown is .._, ........ ,L.., ........... .., ..... 

with elements having 1, 2 or 3 degrees of freedom, respectively, 
node. the see Nooru-Mohamed a concrete 
loaded in shear. test is ..... · ,...,..,.,.,.,... 

2a. 
In the first simulation the elements can only transfer force, 

thus the lattice is equivalent to a spring Meakin et 
al. (1989), Bafant et al. (1990) and Dougill Equation 
(1) corresponds to this network. This network is a~ ... "'.._,.._...., ..... £.;.,,..., .. '--, .... of a linear 
elastic continuum with a value of Poisson's ratio fixed at 
second simulation, the elements can support a shear 
Eq. (1) and half of Eq. (2), Qi = 1 ~~1 (vi - v1-). These 
force and shear force are isomorphic to a spring network with 
plus rotational springs, Jagota and (1994) and 
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16 

crack opening 

32 64 
(b) 

Load-crack opening (a) and crack patterns (b) for simulations in which 
the fineness of the mesh is varied. (Reprinted from Schlangen ( 1995)) 

Discussion fracture laws 
above simulations stress in a beam element is calculated using 

the force in a beam is divided by the cross sec-
H nurP'UPr this is not al ways correct. If a uniform strain is applied to 

....................... , ................. lattice of elements, it is clear that all the elements carry 
stresses in all directions are equal. Yet, when 

~ ....... ~ ...... ~ ... stram is to a triangular lattice, the stress calculated with 
law depends on the direction of loading. 

order to explain this phenomenon the following analysis is performed . 
.... u._ • ..,Jl.Jt,_,.,..,Jl,...,._ lattice of beams, with equal properties, having periodic bound-

ary conditions one is loaded in tension the other direction, see 
the lattice is in horizontal (X) direction using the old 

ture a straight crack is obtained and also a load-crack opening response 
descending branch, see Fig. 6. When the lattice is loaded in the vertical 

however, descending branch stays high and all the vertical 
the lattice break. Next to this difference in crack propagation and 

shape of the load-crack opening response, maximum load depends 
on direction of A uniaxial strain horizontal direction results 

a 33% higher stress a uniaxial strain in vertical direction on the same 

the simulations performed earlier, see Schlangen (1993), the 
to the stress the fracture law consisted of the normal force 

a beam as well as part the bending moment. This, however, has no 
effect on the directionality in the lattice which is discussed above. 
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In Beranek and Hobbelman (1994) and van Vliet and van Mier (1994) a 
normal force and shear force in a beam are combined as Mohr's Circles 
to obtain a value for the stress in a beam. It is not checked, but the author 
believes that also with this fracture law no improvement concerning the 
directionality of the lattice is obtained. 

In the remainder of this section a new fracture law 
main difference with the aforementioned fracture laws is the new law 
a stress is calculated in each node in stead of each beam. All the beams 
connected to a node contribute to this stress. The procedure for calculating 
the stress is outlined in Fig. S. In a node a cut is made Fig. Sa. Out 
of all the normal and shear forces (the bending moment is not included) 
the beams at one side of the cut two resulting forces Fnode and Q node 

computed, see Fig. Sb. This is done for all angles between 0 and 2?T. 
angle is determined for which the normal force is maximal. The shear force 
for that angle is equal to zero, see Fig. Sc. The cross sections of the beams 
the direction perpendicular to the cut for which the normal force is maximal 
are determined as shown in Fig. Sd. Then a stress (]'node is determined as 
shown in Fig. Se. Thereafter the beam for which the tensile stress divided 
by the tensile strength is maximum is removed from the Note that 
for a lattice representing a homogeneous material (i.e. a lattice in which 
the beams have an equal strength and stiffness) all the beams a node have 
the same stress and thus the same breaking point. 

' Fnode 

~ \,_/ 
I ! ---:. Fnode,max ,,~ 

./ ·, Onode 

l• ~ I ()node - A 1+ Az+A3 / ·-..:. 
' jOnode=O I 

(a) (b) (c) (d) (e) 

Fig. 5. Lattice with forces in beam elements (a), resulting normal and shear 
forces perpendicular to a nodal cut (b ), maximum force 
in the node (c), cross sections corresponding to angle (d) 
and resulting stress in the node ( e) 

The relation between the stress found following this procedure, O"node, and the 
real stress (j (which is the local stress a medium as a result of a globally 
applied stress on the lattice) can be determined from the angles in the lattice. 
The real stress (j is the local stress in a node as a result a globally applied 
stress on the lattice. For beam elements with rectangular cross section 
unit thickness the relation is: 

h 
(J = .J3 l (J node (11) 
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(b) 
Fig. 6. Load-crack opening diagram (a) and crack patterns (b) lattice loaded 

tension X and Y direction using the and new fracture law. 

same example as discussed above, the trian
boundary conditions in one direction and tensile 

...,.._,,"'"""·is simulated. Fig. 6 it can be seen that the same 
............. 

11"""'-rn is obtained for the lattice loaded in and Y direction and 
.. ,"._ .... ,;.__ ... _ .... ~,".__._loads as as the complete load-crack opening diagrams 

a homogeneous mesh 
been shown that new fracture law gives 

what about tensile splitting and 
section simulations the and new fracture 

for these types ofloading. A square triangular lattice of beams 
equal properties is used. One beam the centre is removed to 
an imperfection the crack to start. resulting crack patterns 

Fig. and 7b show the crack patterns for a lattice 
tensile splitting horizontal and vertical direction, using old 

simulations shown Fig. 7e and 7f the new fracture 
same loading case. With the old fracture law splitting 

same is observed as tensile 
the previous section. Only the beams in the direction of the tensile 

the simulation of Fig. 7b a sort of splitting behaviour is found, 
crack is not the where it should be. With new fracture 

._,.__._,u ... u_ ................ crack patterns show a much improved behaviour. It is 
also load-crack opening response for both loading 

the new fracture law. 
fracture and 7g,h (new fracture law) the crack 
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terns are shown for a lattice loaded in compressive in 
is no constraint assumed at the supports. With the 
strange crack patterns are observed (7c,d). The lattice .'"'LUU.\,.,U 

direction (7 d) did not fracture at all, the normal 
were compressive. simulations the new again 
better behaviour. However, it should be mentioned patterns 
compression, also with the new fracture law, are .... ,, .... ...., .. ...,._A... prefered 
direction in the triangular mesh, as already explained ,,....., .... ,IL.'LJ'" 3.2. 
discussed a random lattice would give better results. 
with implemented heterogeneity will also do quite well as 

next section. 

(a) (b) (c) 

(t) (g) 

(d) 

(e) 

Fig. 7. Crack patterns for a lattice loaded 
(C) in vertical (V) or horizontal 
(N) fracture law: S-V-0 (a), 

tension splitting (S) or compression 
direction using old or new 
(b), C-V-0 (c), S-V-N 

(e), S-H-N (f), C-V-N (g) and (h) 

5 Back to reality: concrete fracture 

the previous sections some basic features of J.Ul..l-J.\,;\,; ...... '--,....._..., ... JLJ.J.J•.::;,. are ex
plained. All cases are studied for the homogeneous case. Yet, the actual 
goal is to simulate fracture in a real material. Real '-"'"" .... ..., .. jl .... .._..,, 

eral not homogeneous, and therefore fracture will be ........... J,.,......,_ .... .., ... ,'--" 

microstructure of material. The heterogeneity has to 
simulate the fracture process correctly. The scale at 
required should be taken into account too. Different ... ...,.., ......... .._j,~ 
used in the past to implement disorder. These .,.....,...,, ...... , .............. ..,., ..... 
own application (scale) for which they will give good 
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some different options are mentioned briefly: 

o assigning different properties, desired following a certain 
distribution, to the elements in the lattice, see, instance, Herrmann et al. 

989) and Schlangen (1993). 
• a mesh with geometry, but equal properties for the beams, 

instance, Burt Dougill (1977) and Schlangen (1993). 
~ ... ,u..,A~~.., a microstructure and project this on a regular lattice of beams 

assign different properties to the beams depending on their position, 
instance, Schlangen and van Mier ( 1992) and J agota and Bennison 

previous two, a random geometry and a 
instance, Bazant et al. (1990). 

(a) (b) (c) 
Fig. 8. Digital image of a mortar (a), three-phase image after processing (b) and 

a lattice of beams showing different properties for the elements ( c) 

simulations shown in this section a method is used in which the 
microstructure is implemented in a direct way. An image of a real piece 

JlJL._.., ... ..,JlJl..,.Jl is taken. case an image of a mortar, see Fig. 8a. By 
image processing techniques the image is split into three phases, i.e. 

mortar and voids, see Fig. 8b. A lattice of 19931 beam elements 
is projected on top of this image and different properties are assigned to the 

the different zones, Fig. 8c. The elements in the aggregates, 
mortar and interface between them are given a strength and stiffness in 

4 and 2 respectively. In the voids no elements are placed. 
purpose of the simulations below was not to find a real match with 

to show the trend is similar to what happens in real 

simulations are performed using the of Fig. 8c. The load-
cases are uniaxial (Fig. 9a), tensile splitting (Fig. 9b) and two 

compression cases (Fig. 9c,d). The new fracture law explained in section 
4.1 is the tension simulation (Fig. 9a) two cracks start 

sides of the specimen. This, because no rotation of the ends is 
Pieces of material still bridging the two crack faces can be seen, 
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curves 
softening 

stress lS 
observed experimentally. 

For 

Fig. 9. 
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ences between shown and an experiment with fixed bound-

6 

Firstly, an experiment the boundaries are never completely fixed 
Secondly, three-dimensional effect due to the boundary 

becomes very A two-dimensional simulation is not suf-
research is required to get the load-displacement 

compressive loading. 
of stress uniaxial tensile case 

compression case free boundaries shows that the stress 
..,,_,.,_, .. ..._, ..... case is l 0 times higher. This is realistic for concrete. 

10000.0 ..,---··--------·-----··· 

crack opening crack opening 

(a) (b) 
Stress-crack diagrams for lattice loaded in tension and tensile 
splitting (a) and compression with free and fixed boundaries (b) 

of lattice models the simulation of fracture 
that lattice models should be used with care . 

....,...,.J ...... ..., .. A ......... ...,.., results are found are caused by the model and not 
of the material is modelled. 

fracture, the results that are obtained strongly depend on the element 
chosen. Beam elements with three degrees of freedom per node seem 

the best agreement with experimentally obtained crack patterns. 
shape or orientation of the beams in a lattice also influences the 

..., .................................. crack patterns, with the cracks tending to follow the mesh lines. 
disadvantage can circumvented by a random lattice which is 
elastically homogeneous. 

results from simulations also depend on size 
The stress-strain behaviour becomes more 

for increasing size. 
A new fracture law is proposed which uses the maximum tensile stress in 

node to determine which element should be fractured. In contradiction 
to used laws, the stress which is determined does not 
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..... ..,L.,...,JU, ..... on the direction of loading applied on the lattice. 
section 5 a method is outlined to implement heterogeneity a 

material a direct way. A digital image of the microstructure a mortar 
is used to assign different properties to the elements lattice. A .LUl..l-.1.'-''-' 

heterogeneity is implemented following method is subjected 
to a few basic loading conditions. The crack patterns obtained from these 
simulations look very realistic. However, the problem that 
is how to determine the parameters for strength and stiffness 
""'"''"'"""""'"""''-' in lattice. For concrete, especially data for the strength 
stiffness of the interfacial zone between aggregates and mortar are ~AAA~AA~ 
Probably a combined experimental and numerical investigation, as proposed 
by and van Mier (1995), lead to appropriate values. 

Finally, a remark will be made about the application of lattice _u __ ._.._, . ._._...,_..._,. 

It is not realistic to state that lattice models ever be used to analyse 
members on a material level. The use of lattice models, however, 

can very to study the fracture behaviour of a material 
behaviour change if the properties of 

change. Furthermore, lattice models can be a useful tool 
stronger and better materials. 
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