Fracture Mechanics of Concrete Structures

Volume III

Edited by Folker H. Wittmann

AEDIFICATIO Publishers

First published 1996 by AEDIFICATIO Publishers Immentalstrasse 34, D-79104 Freiburg Germany

ISBN 3-905088-15-0

 ISBN 3-905088-13-4
 (Vol. I)

 ISBN 3-905088-14-2
 (Vol. II)

 ISBN 3-905088-12-6
 (Set of three volumes)

Copyright 1996 AEDIFICATIO Publishers

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or othrewise, without the prior permission of AEDIFICATIO Publishers.

Printed in Great Britain by BPC Wheatons Ltd, Exeter

IA-FRAMCOS

International Association of Fracture Mechanics of Concrete and Concrete Structures

Non-profit organization incorporated in the State of Illinois in 1991, with headquarters in Evanston, Ill., USA.

Board of Directors

Folker H. Wittmann, President Zdenek P. Bazant, Past President Ben. I.G. Barr, Secretary Surendra P. Shah, Treasurer

Organizing Committee of FRAMCOS-2

Folker H. Wittmann, Chairman Ben I.G. Barr Zdenek P. Bazant René de Borst Ignacio Carol Alberto Carpinteri Luigi Cedolin Manuel Elices Hideyuki Horii Christian Huet Milan Jirasek Albert S. Kobayashi Victor C. Li

Jacky Mazars Hirozo Mihashi Gilles Pijaudier-Cabot Hans W. Reinhardt Pierre Rossi Keitetsu Rokugo Victor E. Saouma Surendra P. Shah Gerhart I. Schuëller Jan G.M. van Mier Kaspar Willam Juri V. Zaitsev

Local Organizing Committee

Alejandra M. Alvaredo Giovanni Martinola Luc Trausch Andreas Gerdes Tilo Steiger Bernhard Trunk

Kampmann Gustav (1859-1917)

Drawings by Prof. Gustav Kampmann are reproduced on the cover page of all chapters. Kampmann was born in 1859 in Boppard, Germany. He studied at the Academy of Art in Karlsruhe between 1881 and 1884. In 1890, he joined the group of artists (Grötzinger Malerkolonie) of castle Augustenburg in Grötzingen, near Karlsruhe. From there he travelled regularly through Europe and North Africa.

Beringer, J.A. (1922) Badische Malerei 1770-1920. C.F. Müllersche Hofbuchhandlung, Karlsruhe, Germany.

Staatliche Kunsthalle Karlsruhe (1994), Gustav Kampmann 1859-1917, Zeichnungen aus dem Kupferstichkabinett der Staatlichen Kunsthalle Karlsruhe.

Volume I	
Chapter One:	Three old willow-trees at Langenpreising, 1884
Chapter Two:	Alder-trees and willow-trees at Bottenau, 1884
Chapter Three:	Stream Sempt at Langenpreising, 1884
Chapter Four:	Snow covered woodland with tree-trunks and stumps
Chapter Five:	Study of a young tree
Chapter Six:	Birch-trees, 1889
Chapter Seven:	Humid winter day, 1895
Chapter Eight:	Tree in snow covered landscape, 1904
Volume II	
Chapter Nine:	Two bare branches
Chapter Ten:	Mountain forest in winter, 1896
Chapter Eleven:	Spring landscape, 1912
Chapter Twelve (1):	The ruins of castle Hagel, Alsace, 1899
Chapter Twelve (2):	Study of a young tree, 1900
Chapter Twelve (3):	Thunderclouds above a flat landscape with trees, 1912

Volume III

Conference	Workshop One:	The harbour of Lübeck, 1889
Conference	Workshop Two:	Farm house in Zustorf, 1884
Conference	Workshop Three:	Sailing boats close to Hohwardt, 1882
Conference	Workshop Four:	Edge of a village, 1896
Conference	Workshop Five:	Harvest, 1911

VI

PREFACE FOR VOLUME III

Oral contributions to international conferences are and will always remain very specific and extremely limited in time. New results can be presented to an experienced audience in a concise way. Usually, there is hardly any time, however, for in-depth discussions.

For this reason, several conference workshops have been incorporated in the scientific programme of the second international conference on fracture mechanics of concrete and concrete structures held at ETH Zürich in July 1995. The major aim of these workshops was to provide a platform for detailed discussions among small groups of experts on controversial views and approaches. The following five topics have been selected by the organizers:

- 1. Numerical modelling and determination of fracture mechanics parameters.
- 2. Fracture mechanics and design of concrete structures.
- 3. Size effects: theoretical concepts, experimental verification, and implications in structural design.
- 4. Experimental methods.
- 5. Smeared versus discrete failure analysis with application to pullout problems.

Each topic has been outlined by a small number of invited contributions but most of the time was consecrated to free exchange of ideas and in some cases to confrontation of opposing views. Discussions were guided by a workshop coordinator while a workshop recorder tried to summarize main results and conclusions.

All contributions presented during the five conference workshops are compiled in this volume. In this way, it was possible to publish a stateof-the-art report on the five selected topics. This, hopefully, will help to further develop these areas and to reconcile step by step diverging views.

Every editor of proceedings knows from experience that it is

difficult enough to collect papers before the conference and then have the volumes published in time, but it is even harder to get papers for a post-conference volume. There is no strict deadline any more and most colleagues are already busy to prepare papers for subsequent meetings.

I want to thank all authors for their contributions to this third volume of FRAMCOS 2 Proceedings and, in particular, that they have delivered their contributions inspite of all other commitments. This volume is published a few months later than originally planned. Although fracture mechanics as applied to composite materials such as concrete is a fast moving branch of applied science, most arguments are still valid today. It will be interesting to see during FRAMCOS 3 in Japan which of the still open questions will be solved by then and on which questions further work will still be needed.

Zurich, May 1996

Folker H. Wittmann Past President of IAFRAMCOS FRAMCOS-2 Conf. Chairman

VIII

PREFACE FOR VOLUMES I AND II

Thirty years ago, fracture mechanics was considered to be a highly interesting academic subject without any relevance for the design, construction, and maintenance of concrete structures. Few and isolated groups worked in this field and they met on the occasion of well established international conferences on fracture mechanics such as ICF. In these big conferences usually one or two sessions were devoted to concrete.

Suddenly, engineers who at that time had no idea what fracture mechanics really implies got fascinated by this approach and the view was spread that civil engineering will experience a real revolution with the introduction of fracture mechanics into structural analysis. These expectations certainly could not and will never be satisfied. But in this situation, RILEM took a lead and set up a first technical committee on fracture mechanics (RILEM TC 50-FMC). The aim originally was to present a comprehensive documentation on the state-of-the-art (Fracture Mechanics of Concrete, ed. F.H. Wittmann, Elsevier (1983)) and to prepare recommendations on a generally accepted test method to determine fracture mechanics parameters. No doubt, practically everybody expected a standardized method on how to determine K_{IC} of concrete when this committee was set up.

It was during the first meeting of the new RILEM technical committee, held in Delft, The Netherlands, when Arne Hillerborg asked for about 15 minutes to present his ideas on fracture mechanics. At that time, nobody really understood the significance of his ideas and long discussions and patience were necessary to convince a majority of committee members, including the chairman, that the ficitious crack model (FCM) is more realistic to describe cracking of concrete-like materials than LEFM. Finally, the elaboration of the RILEM recommendation on the determination of fracture energy of concrete in 1985 was essentially the work of Arne Hillerborg. This publication can be considered as a real milestone (Materials and Structures (1985) 18, 285-296). We are therefore very glad and proud to have Arne Hillerborg as an honorary guest among the participants of FRAMCOS-2.

Once this test method and the underlying concept was published and generally accepted, the number of papers dealing with applications of non-linear fracture mechanics to concrete and concrete structures both numerically and experimentally increased exponentially. It became difficult to follow all these activities. It was Zdenek P. Bazant who took the initiative and in summer 1990 approached a number of colleagues in order to set up IAFRAMCOS, an international association with one major aim, the organization of a conference on "Fracture Mechanics of Concrete Structures" in regular intervals, typically three years. The first conference was held in Breckenridge, Colorado, USA, in 1992 under the chairmanship of Zdenek P. Bazant. Proceedings of FRAMCOS-1 can be considered as a documentation of the state-of-the-art reached three years ago. At the end of this most successful meeting the general assembly of IAFRAMCOS voted for Zurich to be the place for the second conference, FRAMCOS-2.

We hope to meet again the high standards required for FRAMCOS Proceedings with these volumes. In order to achieve conformity of the presentation we reviewed all submitted contributions carefully and asked some authors for corrections. It was a pleasure to experience a spirit of cooperation with most authors. The few who were not absolutely convinced of the necessity of the proposed corrections will hopefully also be satisfied with the final product.

It is my great pleasure to thank my coworkers for their enormous efforts. Dr. Alejandra M. Alvaredo worked many hours in parallel with the preparation of her own contribution to review and correct papers conscienciously. Mr. Giovanni Martinola and Mr. Bernhard Trunk helped efficiently in this delicate and time consuming operation. Special support by ASMES (Association suisse pour la mécanique des structures) to cover part of the costs for the production of the conference proceedings is gratefully acknowledged. Finally, we could not have finished the editing process in time without the personal engagement of Mrs. Irene Kalt and Mrs. Brigitta de Chapeaurouge.

Zurich, June 1995

Folker H. Wittmann President IAFRAMCOS Conference Chairman

FRAMCOS on the Internet

At the Second International Conference on Fracture Mechanics of Concrete Structures (FRAMCOS-2), held at ETH Zurich, Switzerland, in July 1995 a preparatory meeting on Fracture Mechanics on the Internet took place. More than 20 interested FRAMCOS-2 participants discussed the ways of using the Internet for the international communication within the concrete fracture community. The meeting was chaired by V.Slowik. The participants came to the conclusion that a first step might be the efficient exploitation of the World Wide Web (WWW), one of the services provided by the Internet. It was proposed to set up a WWWserver at ETH Zurich, Laboratory for Building Materials, with T.Steiger serving as the webmaster.

In October 1995 the FRAMCOS-WWW-Server started providing its service. The address is:

http://ibwk28.ethz.ch/FRAMCOS/

The intention of this service is to ease the communication between the researchers and to provide some help to people looking for addresses or publications. A fast-loading alphanumeric opening page provides a short table of contents. From there several documents can be opened. In an introduction, general information on the International Association for Fracture Mechanics of Concrete and Concrete Structures (IA-FRAMCOS) is given. The Publications section contains the tables of contents of all past FRAMCOS Conferences and those of seminars and workshops sponsored or co-sponsored by IA-FRAMCOS. A list of names provides the addresses of researchers working on fracture of concrete. As far as http addresses are available the list of names contains links to individual research home pages. All interested researchers are invited to contact the webmaster and have their names, addresses and links to the individual http documents made available by the server.

The number of accesses indicates that people are seriously using the provided service. In February 1996, a daily average of about 70 accesses was monitored. Unfortunately, only a few people did contact the webmaster in order to provide a link to their local http documents. The webmaster, therefore, kindly asks all interested people for the addresses of their individual research home page, if existent.

It is planned to extend the service. If more links to individual home pages are provided a research subject index can be composed. In addition, documents of general interest might be made available for downloading. From the webmaster's point of view, the submission of abstracts as well as the registration for the upcoming FRAMCOS conference can be done via the Internet by using the FRAMCOS-WWW-Server.

Tilo Steiger Volker Slowik (steiger@hoggar.ethz.ch) (slowik@rz.th-leipzig.de)

Volume III

Contents

Preface for Volume III	VII
Preface for Volumes I and II	IX
FRAMCOS on the Internet	XI

1. Numerical Modelling and Determination of Fracture Mechanics Parameters

van Mier J.G.M.,	
Numerical Modelling and Determination of Fracture Mechanics Parameters for	
Concrete and Rock: Introduktion	1601
Elices M. and Planas J.,	
Numerical Modelling and Determination of Fracture Mechanics Parameters.	
Hillerborg Type Models	1611
Saouma V.E.,	
On Fracture Mechanics in General and Discrete Cracks in Particular	1621
de Borst R.,	
Softening, Damage and Higher-Order Continua	1631

Carmeliet J.,	
Numerical Modelling and Determination of Fracture Mechanics Parameters for	
Concrete and Rock: Probabilistic Aspects	1641
Barr B.I.G. and Swartz S.E.,	
The Need for Standard Test Methods	1655
Schlangen E.,	
Numerical Modelling and Determination of Fracture Mechanics Parameters:	
Workshop Summary Report	1665
Fracture Mechanics and Design of Concrete Structures	
Carpinteri A. and Massabó R.,	
Approximate Analytical Fracture Mechanics Approach to the Design of	
Concrete Structures	1671
Elfgren L., Noghabai K., Ohlsson U. and Olofsson Th.,	

Applications of Fracture Mechanics to Anchors and Bond 1685

Gustafsson P.J. and Dahlblom O.,

2.

Fracture Mechanics in the Design of Concrete Pipes	1695
--	------

Kono S., Hawkins N.M. and Kobayashi A.S.,

Using Fracture Mechanics Concepts to Predict the Shear Strength of Concrete	
Structures	1707

Ingraffea A., Carter B. and Wawrzynek P.,

Application of Computational Fracture Mechanics to Repair of Large Concrete	
Structures	1721

	Modéer M.,	
	Application of Fracture Mechanics to High Strength and Offshore Concrete Structures	1735
	Karihaloo B.L.,	
	Fracture Mechanics and Design of Concrete Structures - Workshop Summary Report	1745
3.	Size Effects: Theoretical Concepts, Experimental	
	Verifications, and Implications in Structural Design	
	Bazant Z.P.,	
	Size Effect Aspects of Measurement of Fracture Characteristics of Quasibrittle	17.40
	Material	1749
	Carpinteri A. and Chiaia B.,	
	A Multifractal Approach to the Strength and Toughness Scaling of Concrete Structures	1773
	Mihashi H. and Nomura N.,	
	Intrinsic Material Law for Predicting Size Effect in Concrete Structures	1793
	Rossi P.,	
	Size Effects in Cracking of Concrete: Physical Explainations and Design	
	Consequences	1805
	Adachi H., Shirai N., Nakanishi M. and Ogino K.,	
	Size Effect on Strength and Deformation of RC Beams Failing in Flexure	1811
	Ulm FJ.,	
	Size Effects: Theoretical Concepts, Experimental Verification, and	
	Implications in Structural Design - Conclusive Remarks	1821

4. Experimental Methods

5.

Shah S.P., Choi S. and Jansen D.C., Strain Softening of Concrete in Compression	1827
	10-1
Nemati K.M. and Monteiro P.J.M.,	
Effect of Confinement on the Fracture Behavior of Concrete under	
Compression	1843
Decoupte P. Hey I.C. McConnell I. White K.W. and	
Vinulanandan C	
An Experimental Study of the Microstructural Mechanism Influencing Crack	
Closure Stresses in a Fine Sand Mortar	1953
Closure Stresses in a Pine - Sana Montar	1655
Reinhardt H.W.,	
Uniaxial Tension	1871
Smeared Versus Discrete Failure Analysis with	
Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems	
Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems	
Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems Willam K. and Carol I.,	
Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems Willam K. and Carol I., Discrete Versus Smeared Crack Analysis	1885
Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems Willam K. and Carol I., Discrete Versus Smeared Crack Analysis	1885
Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems Willam K. and Carol I., Discrete Versus Smeared Crack Analysis Eligehausen R. and Oûbolt J.,	1885
Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems Willam K. and Carol I., Discrete Versus Smeared Crack Analysis Eligehausen R. and Oûbolt J., Fastening Elements in Concrete Structures	1885 1893
Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems Willam K. and Carol I., Discrete Versus Smeared Crack Analysis Eligehausen R. and Oûbolt J., Fastening Elements in Concrete Structures Phillips D.V., Green D.R., Zhang B.S., Pearce C.L. and	1885 1893
 Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems Willam K. and Carol I., Discrete Versus Smeared Crack Analysis Eligehausen R. and Oûbolt J., Fastening Elements in Concrete Structures Phillips D.V., Green D.R., Zhang B.S., Pearce C.J. and Bicanic N 	1885 1893
 Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems Willam K. and Carol I., Discrete Versus Smeared Crack Analysis Eligehausen R. and Oûbolt J., Fastening Elements in Concrete Structures Phillips D.V., Green D.R., Zhang B.S., Pearce C.J. and Bicanic N., Pull-Out Failure Mechanisms in Concrete 	1885 1893 1901
 Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems Willam K. and Carol I., Discrete Versus Smeared Crack Analysis Eligehausen R. and Oûbolt J., Fastening Elements in Concrete Structures Phillips D.V., Green D.R., Zhang B.S., Pearce C.J. and Bicanic N., Pull-Out Failure Mechanisms in Concrete 	1885 1893 1901
 Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems Willam K. and Carol I., Discrete Versus Smeared Crack Analysis Eligehausen R. and Oûbolt J., Fastening Elements in Concrete Structures Phillips D.V., Green D.R., Zhang B.S., Pearce C.J. and Bicanic N., Pull-Out Failure Mechanisms in Concrete Nienstedt J. and Dietrich Ch., 	1885 1893 1901
 Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems Willam K. and Carol I., Discrete Versus Smeared Crack Analysis Eligehausen R. and Oûbolt J., Fastening Elements in Concrete Structures Phillips D.V., Green D.R., Zhang B.S., Pearce C.J. and Bicanic N., Pull-Out Failure Mechanisms in Concrete Nienstedt J. and Dietrich Ch., Application of the Finite Element Method to Anchoring Technology in 	1885 1893 1901
 Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems Willam K. and Carol I., Discrete Versus Smeared Crack Analysis Eligehausen R. and Oûbolt J., Fastening Elements in Concrete Structures Phillips D.V., Green D.R., Zhang B.S., Pearce C.J. and Bicanic N., Pull-Out Failure Mechanisms in Concrete Nienstedt J. and Dietrich Ch., Application of the Finite Element Method to Anchoring Technology in Concrete 	1885 1893 1901 1909
 Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems Willam K. and Carol I., Discrete Versus Smeared Crack Analysis Eligehausen R. and Oûbolt J., Fastening Elements in Concrete Structures Phillips D.V., Green D.R., Zhang B.S., Pearce C.J. and Bicanic N., Pull-Out Failure Mechanisms in Concrete Nienstedt J. and Dietrich Ch., Application of the Finite Element Method to Anchoring Technology in Concrete 	1885 1893 1901 1909
 Smeared Versus Discrete Failure Analysis with Application to Pull-Out Problems Willam K. and Carol I., Discrete Versus Smeared Crack Analysis Eligehausen R. and Oûbolt J., Fastening Elements in Concrete Structures Phillips D.V., Green D.R., Zhang B.S., Pearce C.J. and Bicanic N., Pull-Out Failure Mechanisms in Concrete Nienstedt J. and Dietrich Ch., Application of the Finite Element Method to Anchoring Technology in Concrete Mazars J. and Pijaudier-Cabot G., 	1885 1893 1901 1909

Cervenka J. and Saouma V.E.,	
Discrete Crack Analysis of Anchor Bolt Pull-Out	1921
Ozbolt J. and Pukl R.,	
Smeared Versus Discrete Failure Analysis with Application to Pull-Out	
	1001

Author Index (Volumes I, II, and III)

1941

Volume I

Contents

VII

Preface

1.

Fracture Energy, Strain Softening, and Fracture Toughne	ess
Brokenshire D.R. and Barr B.I.G., A Comparative Study of GF Test Results	3
Uchida Y., Kurihara N., Rokugo K., and Koyanagi W., Determination of Tension Softening Diagrams of Various Kinds of Concrete by Means of Numerical Analysis	17
Ulfkjaer J.P. and Brincker R., Fracture Energy of Normal Strength Concrete, High Strength Concrete and Ultra High Strength Ultra Ductile Steel Fiber Reinforced Concrete	31
Arslan A., Schlangen E., and van Mier J.G.M., Effect of Model Fracture Law and Porosity on Tensile Softening of Concrete	45
Jefferson A.D. and Barr B.I.G., Unified Test Procedure for Evaluating the Fracture Characteristics of Concrete	55
Zhou F.P., Influence of Notch Size, Eccentricity and Rotational Stiffness on Fracture Properties Determined in Tensile Tests	65
Rocco C., Guinea G.V., Planas J., and Elices M., <i>The Effect of the Boundary Conditions on the Cylinder Splitting Strength</i> 75	
Berra M. and Castellani A., <i>Toughness of Old Plain Concretes</i>	85
Planas J., Guinea G.V., and Elices M., Rupture Modulus and Fracture Properties of Concrete	95

Kan YC. and Swartz S. E., The Effects of Mix Variables on Concrete Fracture Mechanics Parameters	111
Feng NQ., Ji XH, Zhuang QF, and Ding JT, Effect of Concrete Materials on Fracture Performance	119
Tasedemir C., Tasedemir M.A., Grimm R., and König G., <i>Microstructural Effects on the Brittleness of High Strength Concretes</i>	125
Tang T., Yang S., Ouyang C., Libardi W. , and Shah S.P., Determination of KS^{IC} and $CTOD_{C}$ from Peak Loads and Relationship	135
Ishiguro S., Stanzl-Tschegg S.E., Tschegg E.K., and	155
Mode I Fracture Behaviour of Recycled Concrete	145

2. Fracture Process Zone

Steiger T., Sadouki H., and Wittmann F.H., Simulation and Observation of the Fracture Process Zone	157
Feng N-Q., Ji XH., Zhuang QF., and Ding JT.,	107
Studies of the Length of Concrete Micro Crack Zone	169
Guo Z.K., Kosai M., Kobayashi A.S., and Hawkins N.M., Further Studies of the Fracture Process Zone Associated with Mixed Mode Dynamic Fracture of Concrete	179
Kovler K.,	
Fracture Mechanics Characteristics at Crack Initiation and Propagation and their Dependence on Structure of Concrete	189
Kitsutaka Y.,	
Fracture Parameters for Concrete Based on Poly-linear Approximation Analysis of Tension Softening Diagram	199
Nomura N. and Mihashi H.,	
A Method to Evaluate Tension Softening Model for Concrete	209
Zhou F.P.,	
A Method for Determining Fracture Properties of Concrete Through a	
Single Test	219

Hack E., Steiger T., and Sadouki H., Application of Electronic Speckle Pattern Interferometry (ESPI) to Observe the Fracture Process Zone	229
Sunderland H., Tolou A., Denarié E., Job L., and Huet C., Use of the Confocal Microscope to Study Pre-Existing Microcracks and Crack Growth in Concrete	239
Crack Formation Under Different Conditions	
Slowik V., Saouma V.E., and Roh YS.,	
Transient Fluid Fracture Interaction	251
Visser J.H.M. and van Mier J.G.M.	
Tensile Hydraulic Fracture of Concrete and Rock	261
Gerdes A. and Wittmann F.H.,	
Influence of Stress Corrosion on Fracture Energy of Cementitious Materials	271
Placeble E and Mahlham C	2/1
Tensile Load-Bearing Behaviour of Concrete after Long-Term Static	
and Cyclic Tensile Preloading	279
Magureanu C.,	
Influence of the Long-Term and Repeated Loading on Fracture	
Mechanics of the Partially Prestressed Beams	285
Vervuurt A. and van Mier J.G.M.,	
Interface Fracture in Cement Based Materials	295
Koide H., Akita H., and Tomon M.,	205
Interaction of Plural Cracks in Concrete During Flexural Failure	305
Landis E.N. and Shah S.P., Experimental Magsurements of Microfracture in Coment Based Materials	315
Coo I Wong MI and Sobrever III	515
Experimental and Numerical Investigation of Failure of Ouasi-Brittle	
Materials	329

3.

Noune A., Courtade R.M., and Benkhira H.,	
On an Efficient New Numerical Method for Resolution of the Frictionless	
Contact Problems with aVariational Inequality Approach	343
Vervuurt A., van Vliet M.R.A., van Mier J.G.M., and Schlangen	Е.,
Simulations of Tensile Fracture in Concrete	353
Brencich A. and Carpinteri A.,	
Interaction of a Main Crack with Ordered Distributions of Microcracks	363

4. Concrete Failure under Compression

Liu YQ., Hikosaka H., and Bolander Jr. J.E.,	
Modelling Compressive Failure Using Rigid Particle Systems	375
van Vliet M.R.A. and van Mier J.G.M.,	
Softening Behaviour of Concrete under Uniaxial Compression	383
Lee YH., Willam K., and Kang HD.,	
Experimental Observations of Concrete Behaviour under Uniaxial	
Compression	397
Wang H. and Hu XZ.,	
Failure of Concrete with Oblique Weak Layer	415
Ikeda K. and Maruyama K.,	
Compressive Strength Variation of Concrete Specimens Due to	
Imperfection Sensitivity	425
Markeset G.,	
A Compressive Softening Model for Concrete	435
Blechman I.,	
Microcracking in Concrete under Compression: its Gradient Mechanisms	
and Reflection in Macro	445
Stroeven P.,	
A Case of Compression Failure in Concrete Due to Stress Release	461

5. Mixed Mode Fracture

Olofsson T., Ohlsson U., and Klisinski M., A Simple Fracture Mechanics Model for Mixed-Mode Failure	
in Concrete	473
di Prisco M. and Mazars J., Mixed-Mode Fracture in Concrete: a Non-Local Damage Approach	483
Peng SY., Shirai N., and Irobe M., Fracture Behaviour of Concrete to Mixed Loading	495
Hu B., Zhao, G., and Song Y., Influence of Age of Loading on Mixed ModeFracture Parameters	
of Concrete	505

6. Scaling Theories and Size Effect

Bazant	Z.P.,
--------	-------

Scaling Theories for Quasibrittle Fracture: Recent Advances and	
New Directions	515
Bolander Jr., J.E. and Kobashi Y.,	
Size Effect Mechanisms in Numerical Concrete Fracture	535
Rossi P. and Ulm FJ.,	
Size Effects in the Biaxial Tensile-Compressive Behaviour of Concrete:	
Physical Mechanisms and Modelling	543
Carpinteri A., Ferro G., and Invernizzi S.,	
A Truncated Statistical Model for Analyzing the Size-Effect on Tensile	
Strength of Concrete Structures	557
Turatsinze A. and Bascoul A.,	
Crack Surface Friction and Size Effect in Mode I Propagation for Mortar	
and Concrete	571
Carpinteri A. and Chiaia B.,	
Multifractal Scaling Law for the Fracture Energy Variation of	
Concrete Structures	581

Feng NQ., Ji XH., Zhuang QF, and Ding JT.,	
A Fractal Study of the Size Effect of Concrete Fracture Energy	597
Trunk B., Sadouki H., and Wittmann F.H.,	
Size Effect and Stability of Fracture	607
Sadouki H. and Wittmann F.H.,	
Numerical Concrete Applied to Investigative Size Effect and Stability of Crack	
Propagation	619
Xi Y.,	
Representative Volumes of Cementitious Materials	635
Shirai N., Moriizumi K., and Ishii K.,	
Size Effect on Shear Strength in Reinforced Concrete Beams with	
Shear Reinforcement	645
Adachi H., Shirai N., Nakanishi M., and Ogino K.,	
Size Effect on Strength and Deformability of RC Beams Failing	
in Flexure	655
Ozbolt J. and Eligehausen R.,	
Size Effect in Concrete and Reinforced Concrete Structures	665
Dempsey J.P., Adamson R.M., and Mulmule S.V.,	
Large-Scale In-Situ Fracture of Ice	675
Eo S.H., Hawkins N.M., and Kwak GS.,	
Fracture Characteristics and Size Effect in Normal and High-Strength	
Concrete Beam	685
Arslan A. and Ince R.,	
The Neural Network-Based Analysis of Size Effect in Concrete Fracture	693

7. Rate Effects

Toutlemonde F., Boulay C., and Rossi P.,	
High Strain Rate Tensile Behaviour of Concrete: Significant Parameters	709
Mechtcherine V., Garrecht H., and Hilsdorf H.K.,	
Effect of Temperature and Loading Rate on Fracture Behaviour of	
Concrete Subjected to Uniaxial Tension	719

Jelinek R., Dieterman H.A., and Sluys L.J.,

Dynamic Crack Propagation in PMMA

8. Fibre Reinforced Concrete

Matsuo S., Matsuoka S., Masuda A., and Yanagi H., A Study on Approximation Method of Tension Softening Curve of	
Steel Fiber Reinforced Concrete	745
Mihashi H., Nomura N., Nakamura H., and Umeoka T.,	
What is Interpreted from Fractured Surfaces in Concrete?	755
Gopalaratnam V.S., Gettu R., Carmona S., and Jamet D.,	
Characterization of the Toughness of Fiber Reinforced Concrete Using	
the Load-CMOD Response	769
Ouyang C., Pacios A., and Shah S.P.,	
An R-Curve Approach for Pull-Out Fibres From a Matrix	783
Vitek J.L. and Vitek P.,	
Fracture of Fibre-Reinforced Concrete Beams with Low Fibre Content	793
Chang TP., Lin CY., Hwang CL., and Shieh M.M.,	
Effects of Fiber on Fracture Properties of Light Weight Concrete Made	
with Fly-Ash Pelletized Aggregates	803
Felicetti R., Gambarova P.G., and Zanini N.,	
On Crack Propagation and Failure Modes in Fiber-Reinforced	
Concrete Slabs	813

729

XXIV

Volume II

Contents

VII

Preface

9.	Numerical Models	
	Weihe S. and Kröplin B., Fictitious Crack Models: A Classification Approach	825
	Carol I. and Bazant Z.P., New Developments in Microplane/Multicrack Models for Concrete	841
	Hasegawa T., Enhanced Microplane Concrete Model	857
	Pamin J. and de Borst R., Gradient-Enchanced Smeared Crack Models for Finite Element Analysis of Plain and Reinforced Concrete	871
	Bolzon G., Maier G., and Tin-Loi F., Holonomic and Nonholonomic Simulations of Quasi-Brittle Fracture: a Comparative Study of Mathematical Programming Approaches	885
	Larsson R., Runesson K., and Akesson M., Embedded Cohesive Crack Models Based on Regularized Discontinuous Displacements	899
	Schlangen E., Computational Aspects of Fracture Simulations with Lattice Models	913
	Baker G. and Grummitt C.A., A Finite Element Approach to 3D Crack Growth in Brittle Solids	929
	Bodé L., Pijaudier-Cabot G., and Huerta A., An Adaptive Mesh Strategy Based on the Ale Formation to Transient Finite Element Analysis of Localisation	945

	Jirasek M. and Bazant Z.P.,	
	Particle Model for Fracture and Statistical Micro-Macro Correlation of	
	Material Constants	955
	Dependent W. L. and Habbelman, C. I.	
	Deranek W.J. and Hobbelman G.J.,	
	2D and 3D-Modelling of Concrete as an Assemblage of Spheres	065
	Reevaluation of the Failure Criterion	965
•	Damage Models	
	Pijaudier-Cabot G., Delaplace A., and Roux S.,	
	Damage in Discrete and Continuum Models	981
	Baker G. and de Borst R.,	
	A Thermo-Mechanical Damage Model for Concrete at Elevated	
	Temperatures	991
	Rouquand A. and Pontiroli C.	
	Some Considerations on Explicit Damage Models Including Crack	
	Closure Effects and Anisotropic Behaviour	1001
		1001
	Carmeliet J. and de Borst R.,	
	Gradient Damage and Reliability: Instability as Limit State Function	1011
	Bazant Z.P.,	
	Additive Volumetric-Deviatoric Split of Finite Strain Tensor and its	
	Implication for Cracking Models	1021
	Polanco-Loria M. and Sørensen S.I.,	
	Damage Evolution Laws for Concrete - a Comparative Study	1027
	Akvüz S. and Tasdemir M.A.,	
	A Damage Mechanics Model for Concrete Subjected to Compression	1037
	Rodé L. Tailban I.I. Pijaudier-Cabot G. and	
	La Borderie Ch.	
	Failure Analysis of Pre-Damaged Concrete Structural Components	1047
	Rhattacharies SS Chrib F Tinawi D and Lágar D	
	Diamanai Jee 5.5., Gini D F., Illiawi K., and Leger F., Poro-Fracture Analysis of Concrete Using a Damage Mechanics Model	1057
	1 010-1 raciale Analysis of Concrete Osing a Danage mechanics Model	1057

10

XXVI

11. Fundamental Considerations

Meftah F., Reynouard J.M., and Merabet O.,	
Localisation and Mesh Sensitivity in Gradient Dependent Softening	
Plasticity	1069
Yoshikawa H., Nagano R., and Willam K.,	
Strain Localization as Bifurcation Behaviour of Elasto-Plastic Softening	
Materials	1079
Huet C.,	
A Continuum Thermodynamics Approach for Studying Microstructural	
Effects on the Non-Linear Fracture Behaviour of Concrete Seen as a	
Multicracked Granular Composite Material	1089

12. Applications

12.1 Reinforced Concrete and Concrete Structures

Karihaloo B.L., Approximate Fracture Mechanical Approach to the Prediction of Ultimate Shear Strength of RC Beams	of 1111
Rokugo K., Kurihara N., Ito T., Uchida Y., and	
Koyanagi W.,	
Hardening-Softening Behaviour and Minimum Reinforcement	of
RC Beams	1125
Sluys L.J. and Brioschi M.A.,	
Crack Spacing in Reinforced Elements	1139
Ahn T.S. and Gopalaratnam V.S.,	
Restrained Shrinkage - Its Impact on the Response of Reinforce	ed
Concrete Members	1155
Casanova P., Rossi P., and Elouard A.,	
F.E. Analysis of SFRC T-Girders Submitted to Shear: A	
Comparison with Experiment	1169

Planas J., Ruiz G., and Elices M.,	
Fracture of Lightly Reinforced Concrete Beams: Theory and Experiments	1179
Coffi I	
Applications of Linear Flastic Fracture Mechanics to Reinforced	
and Prestressed Concrete Structures	1180
Toutlemendo E and Dessi D	1107
Dumamic Analysis of Deinformed Commute States Commission of	
Simplified Matheda	1100
Simplifiea Melhoas	1199
Claeson C. and Gyltoft K.,	
Reinforced Normal and High Strength Concrete Columns -	
Fracture Mechanics and Experiments	1209
Pontiroli C., Rouquand A., and Canton E.,	
Shock Wave Loading on Reinforced Concrete Plates: Experimental	
Results and Comparisons with Explicit Damage Model Predictions	1219
Menétrev Ph	
Simulation of Punching Failure: Failure Mechanism and	
Size-Effect	1229
Cornelius Hansen T	
Eracture of Concrete A New Approach to Predict Crack	
Propagation	1230
Тторидинон	1239
Liang L. and Lin Y.M.,	
Adaptive Mesh Refinement Procedure of Finite Element Method	
for Fracture Mechanics	1251
van Gils M.A.J., Dortmans L.J.M.G., and de With G.,	
Fictitious Crack Modelling of Kiln Furniture Ceramics	1261
Rossi P. and Ulm FJ.,	
A Strategy for Analyzing the Mechanical Behaviour of Concrete	
Structures under Various Loadings: the LCPC Experience	1271
Cervenka I. and Saouma V.E	
Discrete Crack Modeling in Concrete Structures	1285
	1200
Mazars J., Dube J.F., and Ghavamian S.,	1201
simuaruy Laws for Concrete Structures under Dynamic Loading	1301

XXVIII

	Carpinteri A., Valente S., Zhou F.P., Ferrara G., and Melchiorri G.,	
Loads	Crack Propagation in Concrete Specimens Subjected to Sustained 1315	
	Li V.C., Lim Y.M., and Foremsky D.J., Interfacial Fracture Toughness of Concrete Repair Materials	1329
	Horii H., Nanakorn P., and Kabele P., Application of Fracture Mechanics to Design of SFRC Tunnel Linings and Development of Strain-Hardening Cementitious Composites	1345
Tensile	Yagust V.I. and Yankelevsky D.Z., Strength of a Concrete Element under the Action of Concentrated or Shear Force	1361
	Hakuno M., Simulation of 3-D Concrete-Frame Collapses Due to Dynamic Loading	1369
	Plizzari G.A. and Saouma V.E., <i>Linear or Nonlinear Fracture Mechanics of Concrete?</i>	1377
	Cervenka V., Pukl R., Ozbold, J., and Eligehausen, R., Mesh Sensitivity Effects in Smeared Finite Element Analysis of Concrete Fracture	1387
	Bazant Z.P. and Jirasek M., Seismic Localization of Softening Cracking Damage in Concrete Frames	1397
	Galli M, Feltrin G., and Bachmann H., Application of Non-Linear Fracture Mechanics to the Seismic Assessment of Concrete Gravitiy Dams	1407

12.2 Hygral and Thermal Gradients and Crack Formations

Alvaredo	A.M.,	
Crack Form	ation under Hygral or Thermal Gradients	1423

Ulm FJ., Elouard A., and Rossi P.,	
Modelling of Early Age Concrete Cracking Due to Thermo-	
Chemo-Mechanical Couplings	1443
Kanstad T.,	
Bonded High Strength Concrete Overlays Exposed to Autogenous and Drying Shrinkage	1459
Alvaredo A.M., Gallo S., and Wittmann F.H.,	
Experimental and Numerical Study of Drying-Induced Warping of	
Concrete Slabs	1469
Martinola G. and Wittmann F.H.,	
Optimization of Mortars by Means of Fracture Mechanics	1481
Granger L. and Rossi P.,	
An Insight in the Reduction of Drying Shrinkage of Concrete Due	
to Skin Micro-Cracking	1493
Akita H. and Fujiwara T.,	
Water Movement within Mortar Analyzed as a Capillary Flow	1503
Zaitsev Y., Shevchenko V., and Cherednichenko T.,	
Evaluation of Concrete Durability Based on Crack Growth	
Kinetics Data under Influence of Elevated Temperatures	1513
Wittmann F.H.,	
Influence of Drying Induced Damage on the Hygral Diffusion	
Coefficient	1519

12.3 Anchor Bolts

Slowik V., Alvaredo A.M., and Wittmann F.H.,	
Anchor Pull-Out Tests - Influence of Boundary Conditions	
and Material Properties	1529
Zeitler R. and Wörner JD.,	
Fracture Behaviour of Normal and High Strength Concrete	

Ohlsson U. and Olofsson T.,	
Anchor Bolts in Concrete Structures - Finite Element Calculations	
Based on Inner Softening Bands	1545
Cadoni E.,	
Fatigue Behaviour of Anchor Bolts in Concrete	1555
Ali A.,	
FEM Analysis of Tensile Fracture Phenomena in Concrete	
Structures	1565
Noghabai K.,	
Splitting of Concrete Covers - A Fracture Mechanics Approach	1575
Pukl R., Reick M., and Eligehausen R.,	
Computer Simulation of Fasteners in Concrete under Fire	1585

Author Index (Volumes I and II)

1595