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Abstract

This paper shows that size effect curves for peak load are in most cases
inconclusive when determining the tensile strength f; of quasi-brittle
materials modeled with the cohesive crack model. Two different softening
functions such as linear and trapezoidal give the same very accurate
results for notched and unnotched three point bending beams but using
different values of f; . The same trend is shown for splitting tests on square
prisms. To determine the appropriate softening curve one needs additional
experimental information such as the load- displacement curve.
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1 Introduction

Fracture of concrete, rocks, ceramics and other quasi-brittle materials can
be adequately modeled by means of the cohesive crack model, first
introduced by Hillerborg, Modeer and Petersson (1976) and further
developed by the authors. A review of the basic properties of this model
was done in Elices and Planas (1989) and Elices, Planas and Guinea
(1993).
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The softening function governs the behaviour of a cohesive material
and it is supposed by hypothesis to be a material property, geometry —and
size— independent. When a cohesive crack opens, the stress transferred
between its faces relates with the crack opening at this point according to
the so-called softening curve. For monotonic mode I opening, the stress o
is normal to the crack faces and is a unique function of the crack opening
w, o=f(w), as shown in Fig. 1. The stress at the tip of the cohesive crack
is equal to the tensile strength of the material, f;, and progressively reduces
as the crack opening increases. When the crack opening reaches the
critical crack opening w,, the cohesive stress drops to zero and a frue
(stress free) crack propagates.

In many practical cases and for normal sized structures the peak load is
reached well before any point in the cohesive crack experiences complete
softerting, and thus only the initial portion of the softening curve is
relevant. This situation is sketched in Fig. 2, where it is shown that at peak
load no point in the specimen has softened further than the shadowed zone
in Fig. 2b. This fact makes indistinguishable the results obtained with the
true softening curve from others obtained with a softening function with
the same initial behaviour, such as the dashed line shown in the figure.
This is so for notched specimens of laboratory sizes (Guinea, Planas and
Elices, 1994a) and for unnotched specimens of all sizes (Planas, Guinea
and Elices, 1995).

Since the peak load behaviour is determined by the tensile strength f;
and the initial part of the softening curve, the inverse question arises: Can
the tensile strength and the initial part be uniquely resolved from a set of
peak loads for various specimen sizes? As will be shown later, this it is
not possible for all geometries without resort to matching additional
experimental results other than peak loads, such as the complete load-
displacement curve.
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Fig. 1. Cohesive crack and softening curve
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Fig. 2. Peak load situation for a notched beam. (a) Stress profile. (b)
Softening function. The stress at the notch is marked with a circle.

Basically there are two types of initial softening behaviour, in
correspondence with the presence or not of a horizontal plateau sometimes
reported in the literature ( Hillerborg, 1991, Bao and Zok, 1993). Fig. 3
shows the two simplest approximations to these softenings: the linear
softening for curves with initial slope, and the trapezoidal softening for
curves which exhibit a horizontal plateau.

In the following section, peak loads are computed using linear and
trapezoidal softening curves for two common laboratory geometries: the
three-point bending beam (notched and unnotched) and the Brazilian
square prism. The work shows that both the linear and trapezoidal
softenings can predict accurately the same size effect curve for the three
point bend specimens but with different values of the tensile strength. The
analysis performed with the Brazilian square prism geometry shows that
in this case the predicted values of f;are less sensitive to the softening
curve than for the bending specimens. The paper closes with some
comments and conclusions.
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Fig. 3. Initial approximations to softening curves. (a) Linear softening.
(b) Trapezoidal softening.
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2 Tensile strength from size effect curves

For clarity, two series of fracture data for a particular concrete have been
used to determine the tensile strength and the shape of the initial part of
the softening curve.

The concrete was made in our laboratory with a Type III Portland
cement and maximum aggregate size of 5 mm. The water cement ratio
was 0.5 and the grading met the requirements of ASTM C33. Other details
of casting and curing conditions can be found elsewhere (Rocco, 19906).

Two geometries were tested: three point bending beams (with and
without notch, Fig. 4a) and Brazilian square prism specimens (Fig. 4b).

2.1 Three point bend specimens
The nominal strength for this geometry oy, is defined from the peak load
P, as:

Ony = 5L (1)
where s is the loading span, D the beam depth and B the thickness.

Fig. 5 shows the nominal strength for half-notched (a/D=0.5) and
unnotched (a/D=0) beams as a function of the specimen depth. For all the
specimens the loading span was four times the beam depth, and the
thickness B was kept constant, equal to 50 mm.

To determine the size effect curve, four sets of geometrically similar
specimens were tested, corresponding to depths D = 17, 35, 75 and 150
mm, respectively.

Tests were performed according the RILEM recommendation (RILEM,
1985), with some additional refinements suggested by the authors
(Guinea, Planas and Elices,1992; Planas, Elices and Guinea, 1992; Elices,
Guinea and Planas, 1992).
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Fig. 4. Test geometries.
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Three softening curves were used to fit the experimental data, a linear
softening function (Fig. 3a) and two trapezoidal softenings (Fig. 3b) with
relative plateau widths u/w;=0.1 and 0.5, respectively. For each softening
curve, the tensile strength, f;, and the characteristic length, [, were
adjusted to obtain the best fit to the two series of data (notched and
unnotched). The characteristic length is defined as (Hillerborg, 1976):

=gt @)
where E is the elastic modulus, f; the tensile strength and G the specific
fracture energy which can be computed as the area under the softening
curve. For a linear softening (Fig. 3a), [, is equal to Ew;/2f; and for the
trapezoidal (Fig. 3b) is given by E(u+w;)/2f,. The value of E was obtained
from the initial compliance of the curve of load vs. crack mouth opening
displacement (CMOD) for the notched specimens. The result was
E=31GPa.

The results are shown in Fig. 5. The three softenings fit reasonably
well the notched as well the unnotched beams but with different values of
the tensile strength, f;, which varies up to 20% from one softening to
another. As a consequence, size effect curves, even for unnotched beams,
seem to be inconclusive to infer the right value of f; and the true shape of
the softening curve. From another point of view, the results in Fig. 5 show
that a linear softening is adequate enough to model the size effect of three
point bending beams whatever the softening function.
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Fig.5. Size effect curves for three point bend specimens and best fit for
linear and trapezoidal softening functions
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2.2 Brazilian square specimens
The Brazilian square prism is a popular geometry for evaluating the
tensile strength of cement based materials. The geometry is depicted in
Fig.4b. The load is usually applied through a narrow strip of plywood of
width b, usually between 8-16% of specimen depth, D ( BS 1881-117,
1983).

For this specimen, the nominal strength oy, is defined from the peak
load P, as:

2P
ONu = 7B 3)

where D is the specimen depth and B the thickness.

Fig. 6 shows the results of two series of tests with different loading
zone, b/D=0.08 and 0.16. For /D=0.08, prisms with D=37, 75 and 150
mm were tested. For 5/D=0.16, the depths were D=17,37,75,150 and 300
mm. The concrete mix was the same as that for the three point bend tests
described in section 2.1.

To model the size effect curves, the linear and the w/w;=0.1 and
u/w;=0.5 trapezoidal softening functions were again applied. The
parameters f; and /., were obtained using a least squares fitting algorithm
to adjust simultaneously the two set of experimental points (6/D=0.08 and
0.16). Fig. 6 plots the results. In this case, the differences between the
softening functions are embedded in the experimental scatter, and no
conclusions as to which is the most appropriate softening can be drawn.
Nevertheless, the Brazilian splitting geometry seems to be less sensitive to
the softening functions compared to the predicted values of the tensile
strength, which differ now less than 6% ( from 3.5 to 3.7 MPa).

3 The general fitting procedure

To differentiate between the softening curves it is necessary to resort to
other experimental results apart from peak loads, as demonstrated in the
foregoing sections. As an example, Fig. 7 shows the load-CMOD curves
predicted with the softening functions in Fig. 5 for a notched beam of
a/D=0.5 and D=150 mm. The shadowed zone corresponds to the
experimental results. As seen in this figure, the three softenings fit well
only the peak load region, giving a poor prediction for the whole curve.
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Fig.6. Size effect curves for Brazilian square specimens and best fit for
linear and trapezoidal softening functions. Mean values (circled points)
and 95% confidence interval are shown for each size.

Following a method developed by the authors (Guinea, Planas and
Elices, 1994b), a bilinear softening curve for this microconcrete has been
determined. The method makes use of the peak loads as well as the
complete load-displacement curves obtained in three point bend tests. The
bilinear softening function is plotted in Fig. 8 together with the softening
functions of Fig. 5, for comparison purposes. The first segment of the
bilinear curve matches the linear function to properly fit the size effect
curves for the three point bend specimens, which are known to be
dependent on the initial portion of the softening. The second part of the
bilinear curve has been adjusted as described in the reference above, to
match the post-peak behaviour.

The prediction with the bilinear softening function is shown in Fig. 7.
The bilinear curve gives a realistic description of all the load-CMOD
curves. Note that since the bilinear curve has the same initial part as the
linear softening function, predictions with both curves are identical up to
peak load. Then the second part of the bilinear softening comes into play
and the two predictions diverge.
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Fig.7. Load-CMOD curves for notched beams. Experimental results and
numerical predictions for the softening functions shown in Figs. 5 and 8.
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Fig.8. Softening functions used in Fig. 7.
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4. Comments and Conclusions

The foregoing results show that size effect curves are inconclusive when
used to determine the tensile strength or the initial part of the softening
curve. For the three point bend geometry, in a wide range of sizes and for
notched as well as unnotched beams, almost the same size effect curve
can be obtained with linear and trapezoidal softenings, each one with
different values of f,. This proves that the linear softening function is
precise enough to adequately reproduce the observed maximum load size
effect for current laboratory beam sizes.

The same trend is observed in the case of the Brazilian square prism
geometry, although the predicted value of the tensile strength appears less
sensitive to the softening function selection.

To pick out the suitable softening curve it is essential to resort to
additional post-peak experimental results, such as the complete, stable,
load-displacement curve or load-CMOD curve.
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