
Fraclure Mechanics of Concrete Structures 
Proceedings FRAMCOS-3 
AEDIFICATIO Publishers, D-79104 Frei burg, Germany 

ANALYTICAL STUDY OF FICTITIOUS CRACK PROPAGATION 
IN CONCRETE BEAMS USING A BILINEAR cr - w RELATION 

K.T. Sundara Raja Iyengar, S. Raviraj and P.N. Ravikumar 
Department of Civil Engineering, Sri Jayachamarajendra College of Engi­
neering, Mysore, India 

Abstract 
The fictitious crack model (FCM) by Hillerborg et al (1976) is a well 
known model in describing the fracture in concrete structures. Generally a 
numerical method like two-dimensional finite element method is used to 
obtain numerical results for a concrete beam. Recently Ulfkj aer et al 
( 1995) have presented a one-dimensional model for the fictitious crack 
propagation in concrete beams. In their study they have used a linear sof­
tening relation ( cr-w relation). It is known that a more realistic cr-w relation 
is the bilinear one. In the present paper the authors have presented a berun 
analysis by extending the model of Ulfkjaer et al by using a bilinear cr-w 
relation. The results agree closely with those by numerical method studied 
by Brincker and Dahl (1989). 
Key words : Fictitious crack method, bilinear cr-w relation, crack propaga­
tion in concrete beruns. 
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1 Introduction 

It is realized today that linear elastic fracture mechanics (LEFM) is not 
applicable to quasibrittle materials like concrete. A nwnber of models 
based on nonlinear fracture mechanics have been proposed to describe 
fracture in concrete. Of these, the fictitious crack model (FCM) by Hiller­
borg et al (1976) and the crack band model (CBM) by Bazant and Oh 
(1983) have been successful in describing completely the fracture of con­
crete considering its softening behaviour .. In FCM, the softening curve, a 
material property of concrete is given by a stress versus crack opening 
displacement ( a-w) relation. Both these models employ finite element 
method (FEM) to obtain the fracture behaviour. In this paper, the FCM 
will be used to describe fracture in a three point loaded concrete beam. 

Recently a one-dimensional model for the bending failure of concrete 
beams by development of a fictitious crack in an elastic layer with a 
thickness proportional to the beam depth has been presented by Ulfkjaer et 
al (1995). A linear softening relation has been used in their analysis. The 
model is validated by comparing the results with those from a more de­
tailed numerical model. 

2 Description of the model 

A simply supported beam in three point bending is considered. The model 
assumes that a single fictitious crack develops in the mid-section of the. 
beam. As the load is progressively increased, points on the crack exten­
sion path are assumed to be in one of the three possible states :- (i) a linear 
elastic state, (ii) a fracture state where the material is softened caused by 
cohesive forces in the fracture process zone, and (iii) a state of no stress 
transmission. In the fictitious crack zone the a-w relationship is used, 
where a is the stress and w is the crack opening displacement (distance 
between the cracked surfaces). In general, the relationship is expressed by 
the equation a = f(w). The material function f is to be detennined by 
uniaxial tensile tests. The area under the curve f(w) is termed as the spe­
cific fracture energy Gr which is assumed to be a material parameter. The 
model developed by Ulfkjaer et al (1995) is based on two assumptions :­
(i) the elastic response of the beam is approximated by two contributions 
i.e., a local flexibility due to the crack represented by a thin layer of 
springs and a global beam type flexibility, (ii) the softening relation is as-
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sumed linear. The thickness h of the equivalent elastic layer, representing 
local stiffness of the beam is taken as h=kb (independent of crack length) 
where b is the depth of the beam and k = 0.5. They have indicated that 
with this value of h, the results of their model are in good agreement with 
finite element analysis. 

The results of Ulfkjaer et al (1995) can be summarized as follows :-

1. Many of the characteristic features associated with cracking of a con­
crete beam such as size dependency of maximum load etc. are captured 
by this simple model 

2. The point on the load-deformation curve where the fictitious crack 
starts to develop and the point where the real crack starts to grow cor­
respond to the same bending moment 

3. Closed form solutions for the maximum size of the fracture zone and 
the minimum slope on the load-deformation curve are given. 

As mentioned earlier, Ulfkjaer et al have used a linear softening relation. 
It is known that in general this relationship ( cr-w) is nonlinear (Reinhardt 
1984). A bilinear relation is used by Petersson (1981) in his numerical 
studies. Brincker and Dahl ( 1989) based on a numerical study of three 
point bending problem by approximating the cr-w relation by bilinear and 
trilinear segments have concluded that a bilinear relationship is sufficient. 
In this paper, the method of analysis given by Ulfkjaer et al (1995) is ex­
tended for a three point bending problem with a bilinear softening rela­
tionship (Fig. 1 ). 
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Fig. 1 Bilinear softening relation 
showing the kink at k1 cru and k1 We 
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Fig. 2 a) Beam where hatched area is elastic 
layer and b) Deformed beam where only rigid 
body displacements are considered 
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3 Solution for moment-rotation relationship 

Basic assumptions :-

1. The elastic response of the beam is linear. 
2. A crack is initiated at a point when the maximum normal stress ( cr) 

reaches the tensile stress (cru). The crack forms normal to the direction 
of cr. 

3. After the crack is initiated, the fictitious crack progresses and in the 
fracture process zone cr-w relationship is bilinear as shown in Fig. I. 

4. When the crack opening displacement (w) reaches a critical value (we), 
the stress transfer becomes zero and a real crack starts to grow. 

The specific fracture energy which is the area under the softening curve is 
given by 

1 
Gr = - Gu We (k1 + kz) 

2 

The flexibility of the beam is divided into two contributions :-

1. A local layer of bilinear spring, and 
2. A global linear beam flexibility. 

First the deformation of the spring is considered seperately (Fig. 2). 
The fracture process is divided into three phases :-

(1) 

1. Phase I i.e., before the tensile strength ( cru) is reached in the tensile side 
of the beam. 

2. Phase II i.e., development of a fictitious crack in the elastic layer of 
thickness h =kb. This is again divided into two stages :-

• Stage 1 - development of a fictitious crack before kink 
• Stage 2 - progress of the crack after kink. 

3. Phase III i.e., real crack propagation. 

The stress distribution or the load deformation curve in the three phases 
are shown in Fig. 3. 
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Fig. 3 a) Stress distribution at each phase and b) Load deformation curve 

3.1 Phase I 
The elongation Ve = crh/E. By simple geometric consideration, Ve = ~(b-

2y), where <t> is the rotation, b = beam depth and y = vertical coordinate 
(Fig 2). Following Ulfkjaer et al bending moment M and rotation~ are 
normalized as 

-M 6 
µ- aub2t 

(2) 

giving the simple moment rotation relation corresponding to the elastic 
spring layer 

µ(e) = e for 0 < e < 1 (3) 

At the end of phase I, for y =O, cr =cru and µ=I. Thus in phase I, the 
(µ,9) curve is a straight line between the origin and (µ,9) = (1,1). 
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3.2 Phase II 
In phase II there will be two stages i.e., one before the kink and the other 
after the kink. 

3.2.1 Stage 1 - before the kink 
The stress distribution in the elastic layer in this stage is shown in Fig. 4. 

a} bJ 

....._.,, __ T, 

CJ> k,oU 

Fig. 4 a) Stress displacement relation and b) Stress diagram - Stage I, Phase II 

Considering the deformation as well as stress equilibrium ( C = T 1 + T 2), 

the value for the fracture process zone an (Fig. 4(b)) is obtained by the 
equation 

(4) 

where an (5) 

The brittleness number B varies from zero corresponding to ideal ductile 
behavior to one corresponding to ideal brittle behavior. The moment can 
be found by taking moment about the compressive force. In its non­
dimensional form it is given by 
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(e) { 
1 a ft 2 } a { a ft} µ = -+2a ---a +- 2a +-0 fl 20 fl (J'u fl 20 

(6) 

In order to stay in stage I, 8 < 8 k· At kink 8 = e k, a r 1 = a r k 

and a = k 1 a u· Similar equation can be derived for stage II of phase 
Details are given by Ravikumar (1997). In order to stay II, w at 
the bottom of the beam must be smaller than We. The rotation at the end 
of phase II (Oc) is given by equating the stress cr and displacement w at the 
bottom to 0 and We respectively. 

3.3 Phase III 
In phase III the real crack starts to propagate. The length of the real crack 
'a' (Fig. 5) can be obtained from geometrical and equilibriwn ""'"'.._ .... , ....... ,.., .. "" 
tions (Ravikumar 1997). 

a 

Fig. 5 Stress diagram - Phase HI 

Till now only the deformation of the spring has been Elastic 
deformation in the beam parts outside elastic layer are taken 
count by a procedure similar to the one suggested by UHkjaer et 

load-deflection curve of the beam is obtained by using a ap-
proximate procedure (Ravilmmar 1997). 

4 Results 

Nwnerical computations have been done for two beams which are ana­
lyzed by Ulfkjaer et al (1995) and Brincker and Dahl (1989). geo­
metrical and material parameters are given in Table 1. 
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Table 1. Geometry and material properties of the beruns 

Property Symbol Values 
Ulfkiaer et al beam Brincker and Dahl beam 

Beam depth b lOOmm 80mm 
Beam width t lOOmm 40mm 
Beam length 1 800mm 400mm 
Sp. Fr. energy Gr 0.1 N/mm 0.1096 N/mm 
Tensile strength cru 3.0 N/mm2 2.86N/mm2 

Mod of elasticity E 20,000 N/mm2 32550N/mm2 

values of k 1 and k2 are taken as 0.308 and 0.161 for the bilinear case. 
These values are taken from Brincker and Dahl (1989). Table 2 gives val­
ues for p max, e c and µ c for the two beams both for linear and bilinear cr­
w 

P max 
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Table 2. Values for P max , 9 c and µ c 

Quantity Ulfkjaer et al beam 

Linear case 3972N 
Bilinear case 3491 N 
Linear case 5.94 
Bilinear case 10.97 
Linear case LOO 
Bilinear case 0.41 
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Fig. 6 Load deflection curve for Brincker and Dahl beam 
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Fig. 6 shows a comparison of load-deflection curves for linear and bi­
linear softening relations for Brincker and Dahl beam. For comparison the 
values from a numerical study of Brincker and Dahl are also shown. In all 
the calculations, k is taken as 0.5 

5 Conclusions 

1. Taking k=0.5, the results (Fig. 6) for the bilinear model agree closely 
with those of the numerical study by Brincker and Dahl (1989). For the 
linear model Ulfkjaer et al have arrived at the same conclusion. 

2. The maximum values of the load given in table 2 agree closely with 
those obtained by Ulfkjaer et al for the linear model and Brincker and 
Dahl for both linear and bilinear models. 

3. p max is slightly less in a bilinear model when compared to the value 
from a linear model. 

4. The value of e c (8 at the end of phase II) for linear and bilinear models 
are very different. 

5. In a linear model, the point on the load-deformation curve where the 
fictitious crack starts to develop and the point where the real crack 
starts to grow correspond to the same bending moment i.e., µ = 1 
both the situations. The same conclusion has been arrived at by Anan­
than et al (1990) with a different model in their studies using a linear 
strain softening relationship. However, as can be seen from the values 
given in Table 2, these two values in the case of a bilinear model are 
different and also the values of µ c at the end of phase II for these 
beams are less than half the values given by a linear model. 
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