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Abstract 
Damage mechanics is used to investigate the concrete subjected to 
uniaxial tensile loading. Three mixtures of concrete specimens are tested 
to establish the relate damage equations. Moreover, a rather simple strain 
softening model of concrete, containing an adjustable material parameter, 
is deduced. It is found that the calculated results based on the proposed 
model are in remarkably good agreement with the sample experimental 
data. 
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1 Introduction 

Since 1980s, damage theories have been applying to the field of concrete, 
especially for the study of concrete materials under tension. Damage 
mechanics provides an average measure of material degradation due to 
microcracking, interfacial de bonding, nucleation and coalescence of voids. 
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This material degradation is reflected in the nonlinear load deformation 
behaviour of the structure, which can be described in the stress-strain 
relationships for concrete. Up to now, although many damage models 
have been proposed, and have been used with some success to describe the 
damage in concrete (Laland 1980, Ortiz 1985, and Mazars 1986), these 
models are lack of continuity for the damage variable. The reason is that 
the effective stresses defined by those models is first order similarity and 
is not superpositionable. In order to deal with this problem, we suggest an 
exponential model for the damage based on the uniaxial tensile test of 
concrete. Moreover, with the proposed damage model and under the 
border conditions, a simple strain softening formulation is derived and 
discussed with the experimental results of other researchers. 

2 Experimental procedures 

Three different mixtures (which denoted as 1, 2, and 3) are used to product 
the concrete specimens, as shown in Table 1. The materials used are 
portland cement, river sand and crushed aggregate ( d max = 15 mm ). 

Table 1. Mixture proportions of concrete specimens 

Series Mixture proportions 
Cement Water Sand Aggregate 

DEN-I 1.00 0.75 2.85 4.11 
DEN-2 1.00 0.60 2.37 3.87 
DEN-3 1.00 0.50 2.07 3.25 

In order to perform a direct tension test, concrete prisms were cast with 
deformed bars embedded in the specimen (see Fig. 1) for the purpose of 
loading. The specimen geometry and other specifications are given below. 

Specimen prism: 100 mm x 100 mm in the section 300 mm length 
Steel bars: 20 mm in the diameter 120 mm length 

2 bars in each of specimen 
Strain gauges: 25 mm length. 
Since there was a triangular notch of 20 mm depth on both side of the 

specimen, the actual effective ligament section was 100 mm x 60 mm. 
The servohydraulic testing machine is connected to a computer through 
an AID interface for data acquisition and signal generation. The axial 
strains of concrete are measured by the strain gauges placed on the lateral 
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Fig. 1. Geometry of specimen. 
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Fig. 2. Typical stress-strain curves 
of concrete in tension. 

surfaces of the specimen. All specimens are tested under strain control 
mode, with the rate of 20 µs /min. The main test results are shown in 
Table 2. Fig. 2 shows typical whole stress-strain curves obtained from the 
experiments. 

Table 2. Main test results of concrete under tension 

Series Compressive Elastic Tensile Strain to Maximum Fracture 
strength modulus strength peak load displacement Energy 
(MP a) (GPa) (MP a) (10-6) (mm) (Nim) 

DEN-1 18.2 14.5 1.58 164 0.315 111.8 
DEN-2 26.3 20.8 2.05 158 0.151 117.4 
DEN-3 38.6 24.9 2.81 135 0.240 142.l 

3 Analysis of Damage Mechanics 

As Broberg ( 197 4) defined, the damage can be expressed as follows: 

(1) 

where D is damage variable, A0 is initial area, and A eff is effective area. 
According to the strain equivalence principle ( Lemaitre 1992), we obtain 

(2) 

where E0 is initial elastic modulus, E is the effective elastic modulus. 
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From Eq. (2), we know that 

-
a-= aexp(-D) (3) 

According to the relationship of a= E c and Eq. (2), Eq. (3) can be 
expressed as follows 

(4) 

Combining Eq. (3) and (4), we obtain 

(5) 

Analysis for the damage before and after peak load in the experiments 
is shown in Fig. 3. 

According to the results of Fig. 3, the damage equations are regressed 
as follows 

before peak load ( c :s; &P ): D = c, c + D0 (6a) 

where D0 is the initial damage, in the experimental analysis we regard it as 
zero, D( €P) is the damage value when E = EP, C1 and C2 are coefficients. 
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Fig. 3. Damage D vs. concrete strain & before (a) and after (b) peak load. 
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Eqs. (6a) and (6b) can be generally written as follows 

where <x> = 0 , when x :::; O; while <x> x, when x > 0. 
By substituting Eq. (6a) into Eq. (4), we obtain the expression of 

ascending branch of the whole stress- strain curve: 

(Sa) 

Meantime, by substituting Eq. (6b) into Eq. (4), we obtain the 
expression of descending branch of the whole stress-strain curve: 

(Sb) 

Eq. (Sb) can be expressed as 

(9) 

According to the boundary conditions, e.g. aj E=Ep = ap, and 

le [mfr= GF' the coefficients cl and C2 can be obtained: 
Ep 

l (10) 

where le is gauge length, GF is fracture energy. The relationships between 

a- E, D,...., E, and cr,...., E described by the above model are shown in Fig. 4. 

D 
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Fig. 4. Schematic illustrations of a vs. E, D vs. E, and cr vs. E. 
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4 Strain softening model 

In Fig. 5(a), the area under the complete stress-displacement curve 
represents the total consumed energy of concrete in the strain gauge 
length, which consist of the sum energy in the region of FPZ and its 
neighborhood. The energy consumed outside the FPZ, represented by the 
area on the left of the dot line in Fig. 5(a), is relatively smaller as 
compared to the total energy, while the area on the right of the dot line in 
Fig. 5(a) can be used to represented the fracture energy GF. By calculated 
the supplement deformation w, we can directly obtain the strain softening 
curve, as shown in Fig. 5 (b ). 

From Fig. 5, we know that in the descending branch of the complete 
curve, the crack width can be simply expressed as w = M2 - .111 ~ le ( E-EP) 

(where le is the gauge length, EP is the strain related to the peak load). By 
substituting the expressions into the Eq. (9), the expression of strain 
softening curve can be obtained: 

l (11) 

(a) (b) 

Fig. 5. Stress -deformation curve and strain softening curve. 
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Fig. 7. Comparison between theoretical results and experimental data 

The experimental results also show that there exist a good linear 

relationship between In( CY I cr) and w, as shown in Fig. 6. 
From the Eq. ( 11) and the results of Table 2, we can obtain the values 

of k for the three groups of specimens, and the relative strain softening 
curves. Fig. 7 compares theoretical predictions and experimental results, 
and all units are dimensionless for easy comparison. From the figure, we 
can· see that the proposed strain softening curves are in good agreement 
with the experimental data. Moreover, in order to verify the popularity of 
proposed strain softening model, we apply it to the experimental results of 
Gopalaratnam (1985). The basic data are shown as follows: 
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Fig. 8. Comparison between experimental data of Gopalaratnam and 
proposed model curves for the concrete. 

Mixture: C : S : A : W = 1 : 2.0 : 2.0 : 0.45 
Size of specimen: 76.2 x mm x 19.0 mm x 305.0 mm 
Gauge length : 12. 7 mm 
Peak stress: 3.62 MPa 
Maximum crack width : 0. 061 mm 
Fracture energy: 56.4 Nim. 

Thus, we can obtain the value of k = 64.18 mm-1
• By substituting it 

into Eq. (10), the strain softening relationship can be obtained 

a-= o-P exp (-64. 18 w) (12) 

By comparing the calculated results of Eq. (12) to the experimental 
data of Gopalaratnam (1985), as shown in Fig. 8, we can find that the two 
results are in good agreement, indicating that the proposed strain 
softening model based on the damage theory, containing a variable 
parameter, being general and commonly applicable. 

5 Conclusion 

Based on the damage theory, the damage process of concrete under 
uniaxial tension is analyzed, relative damage equations are derived. They 
overcome the disadvantage of lacking of superposition for the previous 
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damage variable. Moreover, the strain softening model is proposed, 
which is not only simple and accurate, but also general and commonly 
applicable. 
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