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Abstract 
In this paper, a two dimensional lattice type model is used for simulating 
the load-displacement response of a notched beam made of Steel Fibre 
Reinforced Concrete (SFRC) and subjected to four-point bending. The 
material is modelled as a lattice of brittle breaking beam elements. 
According to a generated grain structure of the concrete, different 
material properties are assigned to the beam elements. Fibres are inserted 
in the mesh, surrounded by interfacial elements that allow for transfer of 
both normal and shear stresses. The stress in the elements is determined 
from a linear elastic analysis. Fracture is realised by removing those 
elements from the mesh, that exceed their tensile strength. The model is 
very attractive, given the small number of parameters needed. By 
varying the interfacial fibre-matrix strength and stiffness, a qualitative 
study of its influence on the mechanical behaviour of SFRC can be 
carried out. The results of the simulation for one set of parameters are 
given and compared with experiments. 
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1 Introduction 

The most general and effective way of imparting toughness to a brittle 
solid is to bridge any crack that propagates. Consequently, the addition 

fibres in cementitious materials such as mortar and concrete, 
compensates their inherent weakness in resisting tensile stresses, Hannant 
( 197 6). The principal beneficial effects of the fibres occur after the 
development of the first major crack, when fibres prevent unstable crack 
propagation by bridging the crack and by restraining it from opening, 
Shah et al. ( 1995). Of prime importance is the interface between fibre 
and matrix, that tends to be weak and thus is a preferential crack path. To 
prevent immediate pullout, fibres are generally mechanically anchored so 
that frictional dissipation along the debonded interfaces becomes the 
primary source of enhanced toughness, Cotterell & Mai (1996). It is thus 
the fibre-matrix bond which controls the toughness and overall 
performance, rather than the strength of the fibres themselves. 

It is now well established that the structure of the paste in the vicinity 
of an inclusion, whether it is a fibre or an aggregate, is significantly 
different from that of the bulk paste, in terms of morphology, 
composition and density, Bentur et al. (1985). During the last several 
years, many efforts have been made to improve the structure of the fibre
matrix interface and thus increase the bond strength and overall 
properties of the composite materials, i.g. Maage (1977), Wei et al. 
(1986), Njam et al. (1994), Fu & Chung (1996). Nevertheless, beyond a 
certain point, an increase in the bond strength leads to a decrease in 
toughness, as the fibres tend to break rather than to pull out, Mindess 
(1989). Therefore, the need of a theoretical approach of the problem 
through numerical simulation is undeniable for a better understanding of 
the influence of the interfacial bond strength on the overall behaviour of 

composite. 
The models describing the global response of a cement-based fibre 

composite can be divided into two main groups: one dealing with fibre 
composites at the fibre matrix (or constituent) level, which integrates the 
micro-mechanical properties of the components, see i.g. Siah et al. 
(1992), Ouyang et al. (1994), Murat et al. (1992), and the other group that 
considers constitutive relations and rules to model fibre composites as an 
isotropic or anisotropic material, see i.g. Murugappan et al. (1994), 
Christensen et al. ( 1997). The model used in the present investigation 
belongs to the first group. It is based on a simple numerical lattice 
model. 
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2 Outline of the lattice model 

2.1 Model for plain concrete 
Lattice modelling of concrete :fracture has been developed and used in 
many configurations and shown to be highly effective in simulating crack 
growth with simplicity in assumptions and computations, Van Mier 
(1997). Since a detailed description of this model has been extensively 
described in various papers, Van Mier et al. (1995), only a brief review of 
the model is given here. 

In the lattice model, the material is discretized in a triangular mesh of 
brittle breaking beam elements. This mesh may be regular or random, 
Fig. 1. As such, a directional bias is present in the regular triangular 
lattice and, to a lesser degree, in the random triangular lattice. This bias 
can be partly overcome by implementing the heterogeneity of the 
concrete. The lattice is therefore projected on top of a generated grain 
structure and different strengths and stiffnesses are assigned to the lattice 
beams according to their position with regard to this grain structure. 
When the two nodes of the beam are inside a "grain", the beam is 
assigned aggregate properties; beams having one node inside and one 
node outside a "grain" are assigned bond properties, while all other beams 
are assigned matrix properties, Fig. 2. 

The advantage of lattice models is that, especially when the 
microstructure of the material is included in the model, the fracture law 
can become very simple, Vervuurt (1997). 

In the simulations of laboratory scale specimens, only the part of the 
mesh where cracks are expected to grow is modelled with the lattice. The 
elements used for this part are linear, two-node beam elements, whereas 
for the remaining part of the specimen, isoparametric four-node plane 
stress elements are used. 

The simulation is run under a unitary external load and fracturing of 
the material takes place by removing at each step the beam element with 
the highest stress relative to its strength. As the problem is linear elastic, 
all values are relative and the actual fracturing load can be found 
afterwards through the stress-over-strength ratio. After a beam has been 
fractured, simply a new linear elastic analysis is carried out using the 
reduced lattice. The analyses are performed with a standard finite 
element code (DIANA). 
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Regular or random lattice 

the fibres to the original mesh through 
zero allowing transfer of both normal and 

having a simple fracture law as depicted on 
the normal strength ftn , the 

...... ....,,,...,,"'·""'- ..,,.JI..._..._ ... _...,,,.., km the shear stiffuess k1 and the 
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Fig. 3. Interfacial element 4. Interfacial fracture law 

As to model the fibres, two-node truss elements are 
once their constant axial stress overcomes the a.,."....,,....,..,...,.,.. 

is used, the nodes of the at height the fibres must 
in a straight line, before they can be to 
anchoring of the fibres can be by ...... ,." ........... i-._._ ..... i-. 

interfacial parameters over the length of one fibre. 
Again, simulation is started under a unitary external 

step, the element with the highest · 
determined from a linear elastic 
truss element, fracturing of the 
element. If the ,... .... ,,,.,,.,...,, ""' 1""rn"''" 

compress10n zones. 

3 

Four-point bend tests are carried out on Steel Fibre 
beams. The beams have a 600* 150* 1 
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grooves of 12 mm diameter, Fig. 5. To facilitate simulation, fibres are 
aligned along the beam length instead of randomly distributed. The way 
of doing this is explained in Fig 6 : concrete is poured in layers and 
between each layer, fibres are placed in the plane of the notch. In the 
example treated below, the beam is composed of eleven layers of 49 
fibres each. Hooked steel fibres (N.V. Bekaert) having a length of 30 mm 
and a diameter of 0.5 mm, are used. The concrete's compressive strength 
amounts to 42 MPa, whereas its Young's modulus is of about 36 GPa. 

3.2 Model parameters 
The advantage of the lattice model is that it is a simple and transparent 
model. Only a few, single valued parameters are required for the part of 
the specimen that is modelled with the lattice. These parameters can be 
divided in two groups: i.e. parameters according to the global elastic 
behaviour of the mesh and parameters needed in the fracture law. 

To describe the elastic behaviour of the complete lattice, the Young's 
modulus (£=36 GPa) and Poison's ratio (v=0.2) of the modelled material 

\ 

are available as input. The size and modulus of the beam elements must 
be adjusted such that the elastic stiffness and Poison's ratio of the 
complete lattice resemble those values of the continuum. The way of 
doing this has been explained in detail in Vervuurt (1997). 

The parameters which have to be determined for the fracture law of the 
beam elements are the bending coefficient a, the scaling factor /3 and the 
strength of the different types of beam elements ( agw.-egate, matrix and 
bond), Vervuurt (1997). All but the factor /3 have been chosen similar as 
in earlier work, Chiaia et al. (1997). As for {3, it can be determined from 
the globally measured peak stress during the experiments, Schlangen & 
Van Mier (1992). 

L 

Fig. 5. Beani geometry Fig. 6. Fibres placed in the beam 
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The addition of fibres yields eight more parameters, i.e. the cross
section and the Young's modulus of the truss elements modelling the 
fibres, which are chosen equal to their physical values, the strength of the 
fibres and the five parameters describing the fracture law of the 
interfacial elements. The latter may be tuned over the length of a fibre to 
model i.g. the hooks of the fibres. 

In order to reproduce the load-transfer from concrete to fibres as 
closely as possible, the concrete and the steel fibres should be modelled 
with a high degree of accuracy. Nevertheless, a finer model leads to more 
elements and a longer computational effort. In order to maintain 
reasonable calculation times, the following example is based on a random 
lattice of grid sizes = 3 mm and randomness y= 0.75s, see Vervuurt 
(1997). 

The plane stress elements modelling the remainder part of 
specimen are described by their modulus, Poison's ratio and thickness. 

4 Results and Discussion 

Fig. 7 compares the load-deflection plots from an experiment and a 
numerical simulation using the parameters mentioned in Table 1. Fig. 8 
shows a picture of a broken specimen, whereas in Fig. 9 the crack-path 
the simulation is depicted. 

Table 1. Values of the model parameters 

lattice fibre and interfaces 

thickness t [mm] 138 or 150 section A [mm2] 0.2 

height h [mm] 1.72 normal strength ftn [MPa] 0.3125 

aggr. modulus EA [GPa] 137 normal stiffness ~ [N/mm3
] 

matrix modulus EM [GPa] 49 shear strength !ti [MPa] 0.3125 

bond modulus Ea [GP a] 49 shear stiffness ~ [N/mm3] 1012 

aggr. strength ft A [MPa] 10 residual strength Ir, [MPa] 3.125E.7 

matrix strength ftM [MPa] 5 continuum 

bond strength ftB [MP a] 1.25 modulus E [GPa] 36 

bending coeff. a 0.005 Poison's ratio v 0.2 

global scaling {3 5 thickness t [mm] 150 
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The results of the example are based on one set of interfacial
parameters, i.e. interfacial stiffness, strength and residual strength. This 
set of parameters seems to model adequately the crack-path of a physical 
experiment, cast with 11 layers of 49 fibres each. Despite the notch and 
grooves, the crack grew, both in the experiment and the model, around 
the fibres, in the plain concrete. This results in a major brittle drop of the 
load-deflection plot and a low residual strength of the sample, since only 
the first layers of fibres are effective in bridging further crack extension, 
whereas the upper layers take no part in the reinforcing process. 
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Fig. 7. Load-deflection plot from experiment and numerical simulation 

Fig. 8. Physical sample at the end of testing 
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Fig. 9. Modelled sample at the end of simulation 

too strongly so 
fibres. This was easy given the 
When less are placed each goes 
through the fibres, resulting in a more ~ .............. "'·"" behaviour. Even less fibres 
lead again to a brittle behaviour, since fibres are not effective 
crack progresses as Because the 
dimensional, such .. ,,.,~·1 .-. 1·~.n."~" 

different types of n.pn,<:i,nn.1 

parameters. 
Nevertheless, the """"""1'"\"''~"' 

with the 

exactly the 
influenced 

parameter can also 
mechanical anchorage can 
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5 Conclusions 

A new model for simulating crack-growth in fibre reinforced concrete 
was presented. Some preliminary results for one set of parameters 
showed a good adequacy to simulate the load-deflection plots and crack
paths of experiments, thus allowing to better apprehend the effect of the 
fibre bond on the overall response of steel fibre reinforced concrete. 
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