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Abstract 
numerical simulation model is presented for the analysis of the 

deformational behavior of fiber reinforced concrete. Microstructural unit 
elements are used to model the fiber reinforced concrete which is 
decomposed into fiber, matrix and interface between them. The nonlinear 
material properties are modeled separately for those three domains. The 
pullout behavior of parallel fibers at a crack surface is simulated taking into 
account the stiffness of the fiber. 
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1 Introduction 

Concrete is a composite material made up of coarse aggregate and mortar. 
deformational behavior of concrete is nonlinear and influenced by the 

internal inhomogeneity. The effect of internal inhomogeneity is much more 
pronounced in case of fiber reinforced concrete. In order to understand the 
internal mechanism of such nonlinear deformational behavior including 

softening, it is necessary to consider an analysis method which can 
into account the internal material structure of the size of aggregate. 
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Analytical models for the pullout behavior of fiber have been presented 
by Stang, et al.(1990) and Li, et al.(1991) for example. Those models are 
useful because the solution is given in a closed form which makes it easy to 
understand the overall behavior. A numerical simulation method is tried to 
be investigated in this study nevertheless because the nonlinear properties 
of material can be taken into account easily. 

The analysis model considered in this study is called a microstructural 
unit element (see Tsubaki(l995)). It consists of two rigid blocks connected 
by nonlinear springs in the normal and tangential directions of the interface 
between rigid blocks. The mechanical behavior of fiber reinforced 
concrete is influenced by the local bond failure at the interface between the 
fiber and the matrix and the fiber rupture (see Fig. l(a)). If a proper size of 
microstructural unit elements is chosen to represent the domains for fiber, 
matrix and interface (see Fig.l(b)), then the pullout mechanism can be 
investigated taking into account the properties of fiber. In the following, 
the appropriateness of the present analysis model is examined through 
numerical simulation for the mechanical behavior of fiber reinforced 
concrete (see, e.g., Tsubaki and Sumitro(l997)). 
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Fig. I. Pullout of fiber from matrix 

2 Numerical simulation model 

2.1 Microstructural unit element 
The structure of a microstructural unit element is shown in Fig.2. It 
consists of two rigid blocks connected by two springs in the normal and 
tangential directions at the interface between rigid blocks. The mesoscopic 
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inhomogeneous structure of a fiber reinforced concrete can be represented 
by microstructural unit elements by choosing appropriate element size 
considering the size of inhomogeneity. The incremental relationship 
between the surface tractions and the relative displacements in the normal 
and tangential directions of the interface between the rigid blocks of a 
microstructural unit element is expressed as follows. 

[
kn OJ kdu=df· k= 

' 0 kt 
(1) 

where u = [un,u1 ]r and f = [fn,f1f stand for the relative displacements and 
the surface tractions at the interface respectively. Subscripts n and t 
represent the normal and tangential directions of the interface between the 
rigid blocks. Matrix k stands for the properties of the springs in the 
normal and tangential directions. 
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Fig.2. Microstructural unit element 

2.2 Material modeling 
The nonlinear material properties of component materials are modeled by 
properly assuming the matrix k which is a full matrix in general and is 
nonsymmetric in such a case as the phenomenon of friction or shear 
transfer. In the following analysis, it is assumed that k is diagonal as 
shown in Eq.(l). The material model is shown in Fig.3. The stiffhess of 
the normal and tangential springs are reduced when the corresponding 
stress reaches the critical value. The number of stiffness reduction N and 
the reduction ratio a are specified in the present study as follows: Nr = o 
for tension, Ne= 3 for compression, Ns = o for shear, and a= 0.5 for all 
cases. 
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(a) Normal direction (b) Tangential direction 

Fig.3. Material modeling 

2.3 Analysis method 
The numerical simulation is done by using the secant method to assure 
numerical stability. The flow of calculation is summarized as follows. 
1) Apply unit imposed displacement in the direction of the 

displacement control. 
2) Solve the stiffness equation. 
3) Calculate the nonnal and shear stresses at the element interface. 
4) Find the element which first fails at the present loading stage. 
5) Determine the actual imposed displacement from the ratio between 

stress and the corresponding strength. 
6) Reduce the stiffuess of the failed spring by multiplying 

ratio a. 
7) Repeat these steps up to the global failure which is 

according to the excessively large value of the ruso1acerne11t. 

If the global structure is considered to be made up of a -t·n•-t,....h•"'r 

similar small subdomains (see Fig.4), it is effective to use the ao1mmtn 
decomposition method (see, e.g., Tsubaki(l991)). The stiffness ·=, .. ,.,,,,, .... N,. ... n 

for a subdomain is expressed in terms of the related to 11 "i-.c.rn"l! 1 

nodes of the subdomain and those related to as follows. 

[KIJ K 1E] {dU1 } {d.F1 } KdU =d.F; K = KE! KEE ; dU = dUE ; dF = dFE (2) 
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Fig.4. Domain decomposition method 

where K , u and F represent the stiffness matrix, the displacement vector 
and the load vector respectively for a subdomain. Subscripts I and E 
stand for quantities related to internal nodes and those related to external 
nodes of a subdomain respectively. Each part of partitioned stiffness 
matrix is decomposed by LD decomposition and the following relationships 
are obtained (see Adeli and Kamal(l992)). 

Eq.(3) defines w1E and dV1 • From Eq.(2) and Eq.(3), the displacement 
increments at internal nodes are obtained by the following equation. 

(4) 

The stiffness equation for a subdomain is obtained by substituting Eq.(4) 
into Eq.(2) as follows. 
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(5) 

(6) 



(7) 

K • is the reduced stiffuess matrix for the external nodal displacement 
increment dU E , and dF• is the equivalent nodal force increment. 

The overall domain can be analyzed from the global stiffness equation 
by assembling the stiffuess equation of each subdomain under given 
displacement boundary conditions and load conditions. The internal stress 
is calculated after calculating the internal displacements. This domain 
decomposition method is effective in ordinary sequential computation as 
well as parallel computation. The flow of analysis of the domain 
decomposition method is shown in Fig.5. 
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Fig.5. Flow of analysis with domain decomposition method 
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3 Numerical simulation of pullout of fibers 

The pullout behavior of fibers at a crack smface is analyzed by using the 
above numerical simulation method. The size of the overall domain is 
50x lOOmm. The overall domain is decomposed into five subdomains. 
Each subdomain contains one fiber (see Fig.6(a)). The fiber length is 
32mm. The embedded length of fiber is 2 lmm for a long case and l 
for a short case. There is a frictionless crack in the middle of the domain. 
The element discretization and the random distribution of element interface 
are shown in Fig.6(b,c). The number of nodes is 1326, and the number of 
elements is 257 5. The fiber is modeled by connecting microstructural unit 
elements with an element interface whose normal direction coincides with 
the fiber direction. The interface zone between fiber and matrix is modeled 
by one layer of elements whose normal direction is perpendicular to the 
fiber (see Fig.6(b,c)). The element length is 2mm and the cross-sectional 
area used in the calculation of stress is set to be 2mm2

. 

The normal direction of the element interface is given by generating 
uniformly distributed random numbers between 45 and 135 degrees for a 
horizontal element and between-45 and 45 degrees for a vertical element. 

The material constants are: kn 3.3x 104 N/mm, k1= l.4x 104 N/mm, 
ac = 60N/mm2

, cr, = 8N/mm2
, r 0 = 30N/mm2 for the matrix, kn= 

3.3x 103N/mm, k 1 = 8.0N/mm, crc 30Nlmm2
, at = 3N/mm2

, r 0 = 4N/mm2 

for the interface, and kn =2.4x 104 N/mm, k1=2.4x 103 N/mm for the stiff 
fiber. The spring constants of soft fiber are 1/100 of those of stiff fiber. 

Crack t Fiber 

(a) Subdomains (b) Elements ( c) Internal interfaces 

Fig.6. Analysis of pullout of fiber 
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The fiber is assumed to be elastic. The initial material constants are 
uniformly given for all elements of each domain of matrix, fiber and 
interface. The statistical variation of the material is represented by the 
random orientation of the element interface. 
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Fig. 7. Internal failure pattern for stiff fiber 
[ e: Tensile failure; D : Shear failure] 
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Fig.8. Internal failure pattern for soft fiber 
[ D: Shear failure] 
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The final failure mode is shown in Fig.7 and Fig.8. The gradual 
debonding along the interface between fiber and matrix is observed both 
for stiff fiber and for soft fiber as the shear lag model (see, e.g., 
Gopalaratnam and Shah(1987), Stang, Li and Shah(l990)) predicts. The 
debonding zone starts to extend from the fiber interface near the crack 
surface. Debonding is represented by shear failure, or the failure of the 
spring in the tangential direction at the element interface. It is observed 
that debonding occurs along the fiber with shorter embedded length. In 
case of soft fiber, the pullout process ends when de bonding completes at all 
fibers crossing the crack surface. In case of stiff fiber, tensile failure 
occurs at the fiber end forming a tensile crack. The crack tends to extend 
in the direction perpendicular to the fiber. This tensile failure at the fiber 
end seems to occur due to the larger bond strength at the fiber-matrix 
interface. 

The load-displacement curve is shown in Fig.9. The pullout force 
indicates the value for one fiber, while the displacement is the value at the 
crack surface. In case of stiff fiber, brittle and unstable behavior is 
observed because of the local tensile failure in the matrix. In case of soft 
fiber, gradual degradation after the peak pullout force is observed, 
indicating the gradual debonding along the fiber-matrix interface. 

Displacement (mm) 

Fig.9. Pullout force-displacement relationship 

4 Conclusion 

numerical simulation model usmg microstructural unit elements 1s 
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presented for the analysis of the pullout behavior of fibers from the matrix 
of a fiber reinforced concrete. The appropriateness of the present model is 
corr.finned through numerical simulations for a fiber reinforced concrete 
under tension. The use of the domain decomposition method is also shown 
for the case where the overall domain can be decomposed into subdomains. 

Acknowledgment 

The support of the Grant-in-Aid for Scientific Research(C) of the Ministry 
of Education is gratefully acknowledged. 

References 

Adeli, H. and Kamal, 0.(1992) Concurrent analysis of large structures I. 
Algorithms, Applications. Computers and Structures, 42(3), 413-
424, 425-432. 

Gopalaratnam, V.S. and Shah, S.P.(1987) Tensile failure of steel fiber­
reinforced mortar. Journal of Engrg. Mech., ASCE, 113(5), 635-652. 

Li, V.C., Wang, Y. and Backer, S.(1991) A micromechanical model of 
tension-softening and bridging toughening of short random fiber 
reinforced brittle matrix composites. Journal of Mech. Phys. Solids, 
39(5), 607-625. 

Stang, H., Li, Z. and Shah, S.P.(1990) Pullout problem: stress versus 
fracture mechanical approach. Journal of Engrg. Mech., ASCE, 
116(10), 2136-2150. 

Tsubaki, T.(1991) Deformation of concrete due to drying. Proc., ASCE 
Engineering Mechanics Specialty Conference, Mechanics Computing 
in 1990s and beyond, 2, 1149-1153. 

Tsubaki, T.(1995) Numerical simulation of deformational properties of 
concrete by using microstructural unit elements. Trans. of the Japan 
Concrete Institute, 17, 119-126. 

Tsubaki, T. and Sumitro, S.(1997) Modeling of tensile and shear 
mechanical properties of steel fiber reinforced concrete. Concrete 
Research and Technology, JCI, 8(1), 233-241. 

540 


