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Abstract 
A novel testing procedure for mixed crack propagation in concrete is 
presented: Four Point Bending of notched beams under the action of two 
independent force actuators. In contrast to classical procedures, this 
method allows non-proportional loading and crack trajectory modi­
fications by changing the action of one actuator. Different experimental 
crack trajectories, under mixed mode and non-proportional loading, are 
presented together with the corresponding curves of load-CMOD and 
load-displacement. The tests were developed for three sizes of 
geometrically similar beams, and the results are useful for checking the 
accuracy of mixed mode propagation numerical programs. The programs 
should predict the crack trajectory and a complete group of experimental 
records for three different sizes of beam. The Cohesive Crack Model is 
incorporated into a finite element code with satisfactory results. 
Key words: Concrete, fracture, mixed mode, finite element method. 

1 Introduction 

Mixed mode crack propagation in concrete is a complex problem, even in 
two dimensions. During the last two decades much work has been done to 
improve the knowledge of this problem in order to develop analytical and 
numerical tools to describe the initiation and propagation of the cracks in 
mixed mode I/II in concrete structures. 

A relatively large number of experimental results of the crack initiation 
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and the propagation in mixed mode on notched beams are based on the 
Iosipescu geometry (Iosipescu 1967): Arrea & Ingraffea (1982), Bazant & 
Pfeiffer (1986), Bocca et al. (1991) and Schlangen (1993), among others. 
Other important sets of tests have been developed by the Delft group on 
notched specimens partially cracked in tension (Nooru-Mohamed & Van 
Mier 1990; Nooru-Mohamed 1992). More detailed information on other 
geometries and experimental data are found in Galvez et al. (1998). The 
advance has been important, but some difficulties remain. The Iosipescu 
geometry and the non-symmetric three point bend tests give trajectories of 
the crack that are easy to predict within the wide scatter of the results. The 
tests of the Delft group led to an overlapping of several cracks and showed 
dependence on the loading history. In the opinion of the authors, there is 
no adequate benchmark to verify analytical and numerical models for 
mixed mode fracture of concrete. 

The numerical aspects of the cohesive crack model has been included 
finite element programs (Valente 1995, Reich et al.1993 and <;ervenka 

1994) as well as in boundary element programs (Saleh and Aliabadi 
1995). In this work, it is assumed that the crack grows in the direction 
normal to the maximum principal stress (the Maximum Tangential Stress 
criterion). This hypothesis has been verified for materials of almost linear 
elastic behaviour (Galvez et al. 1996), but it has to be verified for mortar 

concrete with more involved trajectories of the cracks. 
purpose of this contribution is to provide additional experimental 

information on mixed mode fracture of concrete: a novel testing 
procedure, crack trajectories, load-displacements and load-CMOD curves 

may help research in this field. A numerical prediction of the 
experimental tests is also presented. 

2 

mode test 
shows the geometry of test specimens and the forces diagram of 

testing procedure. Forces P 1 and P2 are supplied by independent force 
actuators, which permits non-proportional loading of the specimen. 
Different combinations of Pl and P2 provide different trajectories of the 

Stable tests were achieved by applying Pl through a 
servocontrolled machine and P2 through a spring boundary 

(Fig. lb). 

Material and SP€~cnner1s 
identical concrete mixtures of concrete were used for the specimens, 

composed of Portland cement, siliceous sand as fine aggregates, and 
siliceous crushed coarse aggregates of 5 mm maximum size. The cement 
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was supplied in bulk to guarantee the homogeneity of the tests. The 
water/cement ratio was 0.45 and the mean, settlement measured with the 
Abram's cone for the five mixes was 100 mm, approximately. 

On each mixture, three homotetic sizes of specimens were cast. The 
dimensions and number of specimens are detailed in Table 1. The fracture 
energy, compressive strength, Young's modulus and tensile strength were 
determined in accordance with RILEM 50-FMC, ASTM C39, ASTM 
C469 and ASTM C496, respectively. Mechanical properties of the 
concrete are detailed in Table 2. 

The specimens were cast horizontally in one layer in rectified steel 
moulds. The specimens were left in the moulds 72 hours, covered with 
saturated sacking at room temperature. They were then left in a curing 
room at 20°C and 99% relative humidity for 28 days; from then until 
testing they were immersed in lime saturated water at room temperature. 
The notches were machined with a low speed diamond cutting disc. The 
support surfaces were ground to avoid spurious displacements due to 
crushing of the irregularities of the surface. 

The specimen nomenclature is the following: Mixture; Size; Number of 
specimen. 

2.3 Experimental procedure 
To obtain different crack trajectories, the extreme values of the spring 
stiffness (K) were adopted: (a) In type 1 tests, K was 0 (Fig. 2a), in 
type 2 tests, K was oo (Fig. 2b ). In type 2 tests, the boundary condition at 
point B was imposed by an actuator that prevented vertical displacement 
throughout the test. 

During the tests the following parameters were recorded: the Crack 
Mouth Opening Displacement (CMOD), the load P, load-point 
displacement of force P, the displacement of point B (Figs. 2a and 2b) and 
the reaction force at point B (test type 2). 

The tests were performed in CMOD control. The CMOD rate was 

a) 0 b) 0 l P2 P1 K p 

ID ID 
!B 

0/2 

)Sl<'. f X xx 
0/4 30/2 D/2 20 0/4 0/4 30/2 0/2 20 D/4 

Fig. 1. Geometry and forces diagram of testing procedure under non 
proportional mixed mode. (a) Idealized. (b) Experimental device. 
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0.004 mm/min until 40 % of the peak load in the descending branch and 
0.08 mm/min until the end of the test. Type 1 tests were performed 
without displacement control at point B. 

2.4 Testing equipment 
Load P was supplied by a servocontrolled INSTRON 1275 testing 
machine, the reaction at point B through a servocontrolled force actuator 
INSTRON 1287. The load P and reaction at point B were measured with 
5, 25 and 100 kN INSTRON load cells with ± 0.5 % error at full scale. 
Details of the extensometers are given in Galvez et al. ( 1998). 

Table 1. Dimensions and number of specimens per batch. 

D L B Number of Objective 
(mm) (mm) (mm) specimens 

DJ 75 340 50 8 MP&MM 
D2 150 675 50 4 MM 
D3 300 1350 50 2 MM 

D: Depth; L: Length; B: Thickness 
MP: Mechanical properties; MM: Mixed mode tests 

a) 0 b) D 

K=O p K= oo p 

ID ID 
:B 

D/2 

B 

vv 
/1 7' /'!L7'1L X.Y 
D/4 30/2 20 0/4 0/4 30/2 D/2 20 0/4 

Fig. 2. Geometry, forces and boundary conditions in mixed mode tests. 
(a) Type 1(K=0). (b) Type 2 (K = oo). 
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Table 2. Mechanical properties of the mixtures. 

Batch fck f ct Ge E 
(MPa) (MPa) (Nim) (GPa) 

1 54 3.0 69 38 
2 56 3.2 70 38 
3 56 2.8 61 38 
4 61 3.0 75 39 
5 57 3.0 69 39 

3 The cohesive crack model on mixed mode fracture 

3.1 Numerical simulation technique 
A numerical simulation of the mixed mode tests was made by the 
incorporation of the cohesive crack model into a finite element code. The 
main stages of the process are the calculation of the crack path for each 
size of specimen and type of test, and the incorporation of the cohesive 
crack model to the crack path. 

The crack trajectory is calculated by means of the maximun principal 
stress criterion. The numerical prediction is made with the FRANC2D 
code. 

The cohesive crack model incorporation uses non-linear springs. 100 
non-linear equidistant springs are used for the numerical simulation, each 
following the softening law of the concrete and oriented in a direction 
normal to the faces of the crack. For the numerical simulation, the 
ABAQUS® code is used and the arc-length technique adopted. 

3.2 Softening law 
The softening law is an integral part of the cohesive crack model. This 
function, a material property, relates the stresses acting across the crack 
faces to the corresponding crack openings. In this work, a bilinear 
approximation was used. The parameters of the curve were determined 
using the general bilinear fit (GBF), developed by Guinea et al. (1994), on 
notched three point bend beams of D = 75 mm . 

4 Experimental results and numerical prediction 

4.1 Trajectories of the cracks 
Fig. 3 shows the experimental envelope of the trajectories of the cracks 
and the numerical prediction. The accuracy of the prediction lends further 
support to the hypothesis that the elastic fracture crack path is a good 
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approximation for concrete structures, even though fracture is clearly non­
linear. So far, this result has been shown to be valid for stable tests. 
Further testing is needed before it can be used for unstable crack growth. 

4.2 Load-displacement and load-CMOD curves 
Fig. 4 and Fig . 5 show the records of load P vs CMOD and displacement 
of the application point of force P. The agreement is good, particularly for 
the smallest (D = 7 S mm) and medium (D = 150 mm) sizes. 

The peak load is accurately predicted in all cases by the numerical 
model, except for the biggest size (D = 300 mm) with type 2 tests. 

The numerical prediction of the descending branch in the curves of 
load P vs CMOD (Figs. 4a, 4c, 4e, Sa, Sc and Se) is good, as is that of load 
P vs displacement of the aplication point of the load P (Figs. 4b, 4d, 4f, 
Sb, Sd and Sf), with the exception of the biggest size (D = 300 mm); this 
suggests that the experimental fracture energy in mixed mode is greater in 
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Fig. 3: Experimental crack trajectories and numerical prediction. (a) D = 
7 5 mm. (b) D = 1 SO mm. ( c) D = 300 mm. ( d) Axes of reference. 
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Fig. 4: Curves load-CMOD and load-displacement for the type 1 tests and 
sizes Dl (D = 75 mm), D2 (D = 150 mm) and D3 (D-= 300 mm). 
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Fig. 5: Curves load-CMOD and load-displacement for the type 2 tests and 
sizes Dl (D = 75 mm), D2 (D = 150 mm) and D3 (D = 300 mm). 
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largest specimens than in mode I with small specimens. 

5 Conclusions 

• trajectory of the cracks concrete structures can 
by means a linear elastic 
behaviour of concrete is clearly 

• incorporation of the cohesive crack model 
program gives a good prediction mixed 
concrete. More specifically, experimental 
load P vs displacement curves are well predicted 
model, specially for the smallest and the medium sizes 
beams. 

e the largest sized beams, 
fracture properties of concrete U.H .. ,._..._,, ... _._ 

to worse prediction of the descending branch of the ... ,, ... _,....,,_jLLL.L ... ,U ............ 

vs displacement curves. It suggests an apparent size effect 
descending branch. 

• Further research is required to size on 
descending of the curves P vs displacement. 
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