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The failure of under- and 
concrete beams depends not only on strength, to a 
on the ductility and softening behavior of concrete 

Recently, a finite element 
University of Colorado for the assessment 

to that a sophisticated analysis .._,._,.,,J.._A,._, ........ 

is under development based on a ~~~··-~~-~~~ 
sentation of the cross-section which accounts 

slip, and transverse ~~-·~~~·~~--~·~~~~· 

is to compare the predictions 
results of the 
concrete beam 
specified 

Concrete' is 
argument of ~ ~~~.,~-,~ 

compress10n. 
Key words: Compressive failure, 

beam. 
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1 Introduction 

The vulnerability of highway bridges to earthquake ground motions 
was very apparent in a number of major earthquakes, such as the 1971 
San Fernando, the 1989 Loma Prieta, and the 1994 N orthridge earth­
quakes (Seismic Advisory Board) in California, and the recent 1995 
Hyogoken-Nanbu earthquake (EERI, 1995) in Japan. Bridge struc­
tures which were severely damaged in the Hyogoken-Nanbu earth­
quake, were designed with older code provisions, lacking specific de­
tailing requirements to ensure sufficient ductility of the piers. While 
most of the catastrophic failures of reinforced concrete bridge piers 
in that earthquake can be attributed to inadequate confinement or 
transverse reinforcement, the damage induced in numerous oversized 
piers is still difficult to perceive without detailed engineering analysis. 
This includes severe bending and crushing failures, as well as brittle 
diagonal shear failures which took place in many oversized piers. 

A research project is carried out at the University of Colorado at 
Boulder to explain some of the failure phenomena of bridge piers in 
the Hygoken-N anbu earthquake. This paper describes the on-going 
effort in terms of a flexibility-based fiber model for beam-column 
analysis ( Spacone et al., 1996), and in terms of a three-dimensional 
finite element analysis with a triaxial constitutive model for concrete 
(Kang et al., 1997), to capture diffuse and localized failure modes 
under different triaxial load scenarios. To illustrate the performance 
of the two models with a specific softening problem of great interest, 
the nonlinear behavior of an over-reinforced concrete beam is stud­
ied which W<:t~ tesLed at the Technical University Aalborg, Denmark 
(Ulfkj~r et al., 1997) in conjunction with the benchmark problem 
specified by RILEM Technical Committee 148 SSC. The ACI/ ASCE 
Committee 44 7 on 'Finite Element Analysis of Reinforced Concrete 
Structures) does participate in this round-robin test in order to eval­
uate the predictive capabilities of state-of-the-art finite elements to 
capture compressive failure of concrete due to softening not only in 
tension but also in compression. The paper summarizes first results 

the over-reinforced concrete beam which will eventually be com­
pared with experimental data on the benchmark problem that have 
not been made public for obvious reasons. 
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first part of this paper the performance of 
based fiber elements proposed by Spacone et 
response of an over-reinforced concrete 

geometrically similar 
the benchmark study. is ~~~ .... ~ ... ·~~ ... 
paper. The specimen dimensions reinforcement are 
Figures 1 and 2. The beam is simply supported 
7200 mm, depth 400 mm and thickness 200 mm. 
of normal strength concrete with 20 mm-diameter 
at the bottom and two bars at the top. The has 

four-point loading, with loads applied at 600 mm 
force compression failure beam, the 

interrupted at approximately 300 mm from midspan 
compressive strength of the strength concrete was 22. 
and the yield stress for 

The goal of the joint 
Ulfkj33r et al. (1997) is to 
niques, in combination with standard test 
concrete under mode I and 
correctly predict the behavior over-reinforced concrete ...,'"',_,., .......... ...,. 

The beam of Figure 1 was initially studied 
element depicted in Figure 2. The element is 
assumption that plane sections plane 
gitudinal axis of the element. is 
the force approach, and assumes constant axial 
ing ·moment diagrall?-s inside The '""' ... '""' .......... '""' ....... 
rate because assumed 
that the internal forces satisfy 
forces. The element is ...... ~ ......... ,J ... 

used to simulate the response 
axial forces. 

The element idealization of 
in Figure 2. Due to the symmetry 
beam was discretized into four nodes and three v.1.\../.1..!..l.'-.;.1..l.U'u• 

beam element extends from the support to the 
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Figure 1. Over-reinforced concrete beam. 
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Figure 2. FE mesh of over-reinforced concrete beam & section discretization 

into layers. 

the load is applied in displacement control. The second element ex­
tends until the point where the top reinforcement is interrupted, and 
the third element extends to midspan. The section discretization 
into layers is shown at the bottom of Figure 2. Thirteen concrete 
layers were used. More refined section discretizations do not show 
substantial changes in the results. Elements 1 and 2 have the same 
cross section with both top and bottom reinforcement (Section A-A), 
while element 3 has no top reinforcement (Section B-B). The uniaxial 
constitutive law for concrete is based on the Kent-Park model (Kent 
and Park, 1971). The law is shown in the inset of Figure 3. It is a 
parabola from the origin to the point of maximum strength (Eco, f~), 

followed by a softening straight line that terminates where the line 
reaches a residual compressive strength of 20% f~ at a strain called Ecu· 

For larger compressive strains the residual strength remains constant. 
This model is important for understanding of the results of the numer­
ical study. For the current study, the peak strength f~ = 22. 75 M Pa 
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was at a strain Ec0 = 0.0014; while different values of slope 
the softening curve were used. The tensile strength concrete was 
neglected in this study concentrates on the '"''-'·LLL,_n,_ 'VLJU.Lv•J.J. 

havior of the beam. As for the the 
was used et al., 1973). Following the data 
et al. (1997), the initial stiffness was = 222, 000 
yield stress fy = 650 M Pa. A very small strain hardening modulus 
was used. An study of the problem showed 
number of elements nor the number 
selected in the constant moment 

integration ~..._,~A•V~ 
have any LL~L.L~~JLL~·~ 

beam response. bending moment is constant 
any number of force-based elements are capable of 
stant moment solution. The only parameter that on 
beam response is the softening branch of the concrete stress-strain 
relationship. 

The results of the numerical study are shown 3. 
figure plots the applied load P versus the vertical 5 mea-
sured at midspan. results are shown for con-
crete softening. Higher values of ultimate concrete strain, Ecu 

(the strain at which the stress reaches a residual strength 
not only induce more ductile response, but also beam 
strength. A comparison between 
normal strength concrete (from 
by Kent-Park sheds more insight on analyses. 
accurate representation of the strength and ductility 
to overestimating the initial modulus of elasticity of material, 
because of the parabolic formulation shown in the ascending branch 
of the stress-strain relations. It is therefore expected the elastic 
stiffness of the numerical analysis be higher 

the experimental test. As for the descending 
strength of the model is 20% f~, which appears to 
the experimental value. Finally, slopes were for 
descending branch. For a value of Ecu = 0.00575 the descending slope 
is very steep, as shown in Figure 3. Smaller values Ecu cause snap-
back the response, thus this case was not considered 
study. Figure 4 shows the stress response of 
displacement at midspan o for the case Ecu 
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extreme concrete fiber in compression (labeled 'concrete l ') reaches 
its strength at a displacement of approximately 30 mm and then 
gradually looses the strength. The three steel layers are initially in 
tension, but for large displacement the upper layer (labeled 'steel 1') 
goes into compression, indicating that the neutral axis moves below 
'steel 1 '. When the concrete in compression is severely crushed, the 
section is reduced to the bottom steel only, and for equilibrium to be 
maintained some of the steel must be in compression. 

20.0 

I0.0 

0.0 +----+----+--+----+--+---+--r----< ·1.2+----+--+---+---<---+--+-

M ITT ~ ~ ~ ~ m ~ ~ 

lli~ts(mm) 

M ~ ~ ~ ~ ~ ~ ~ ~ 

diopQoemenl Ii (mm) 

3. Applied load vs. midspan . Figure 4. Midspan section: normalized 

deflection. fiber stress vs. midspan deflection. 

Subsequently, a numerical study was performed to assess whether 
the beam model suffers from localization due to a numerical imper­
fection. The beam of Figure 2 was tested using a concrete with the 
same properties of Figure 1, but with Ecu = 0.05. The beam was stud-

first without a numerical imperfection and then with a reduced 
concrete compressive strength f~ = 22.74 M Pa at the last integration 

of element 3. The analyses were repeated for 2, 3 and 4 integra­
tion points. The results of Figure 5 clearly indicate that this small 
imperfection suffices to cause strain localization at the last integra­

point, and the overall effect on the post-peak response increases 
with the number of integration points. This behavior is illustrated in 
more detail in Figure 6, that shows the moment-curvature response 

element 3 with two integration points. While section 2 (the one 
with f~ = 22. 7 4 M Pa) reaches the peak and then softens, section 1 
(the one with f~ = 22.75 M Pa) does not quite reach the peak and 
unloads elastically. The analyses of Figures 5 and 6 were performed 
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with f~ = 22. 7 4 M Pa throughtout the last The test 
was then repeated by setting f~ 22.74 M Pa only in the extreme 
concrete fiber in compression the last integration point. 

and loss of mesh objectivity were observed in this case, too. It 
should be pointed out the beam used for the analyses uses 
Gauss-Lobatto quadrature thus the first and last 
points always coincide with 

of analysis clearly 
behavior suffer from 

solid finite elements. 

nlP. number of 
p I int-091ationpoints 

'f j_ in element 3 

-------1; 
+----=36=00=mm~----.1f 0 

40.0 SO.O 80.0 100.0 12l.O 

di spiacemenl 0 (!Tm) 

5. Beam analysis with a numeri­

cal imperfection at the last 

integration point of element 3. 

Three dimensional 

1 Triaxial concrete L~~~ ~·~i 

similar to the ones observed 

2.0E+OO 

1.SE+OO 

1.0E+OS 

O.OE+00+-----+----+----+---·-1 

O.OEt-00 4.oe-a; s.oe.a; 1.2E-04 1.6E04 

Qr.oiltur&(l . ...,,) 

6. Section response for analysis 

with two integration 

triaxial concrete model proposed by Kang (1997) 
an elasto-plastic constitutive in which the 
surface and the failure envelope bound the hardening regime 
crete tension and compression, respectively. After the stress 
reaches the failure envelope, the concrete model exhibits strain 
ening under progressive straining in triaxial tension, and perfect 
ticity under high confined compression. Hence, the concrete LLL, .... '-4, ....... 

captures both hardening and softening in compression and tension. 
A non-associated flow rule plays a significant role in characterizing 
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plastic dilatation in order to assure realistic predictions of inelastic 
volume changes at different confinement levels. The main features 
of the novel concrete model and its distinction from other existing 
models are briefly summarized below. 

3.1. l Elasto-Plastic Formulation 
Based on standard flow theory of elasto-plasticity the strain rate de­
composes additively into an elastic component and a plastic compo­
nent, E = Ee+ Ep in the case of infinitesimal deformations. The elastic 
strain rate is related to the stress rate by Hooke's law: 

0- = £ : Ee = £ : ( E - Ep) (1) 

where E = A8 0 ~ 2GI denotes the isotropic elasticity tensor. 
Assuming that there is no elastic damage the elastic properties remain 
constant during the entire plastic deformation process. The elastic 
range is delimited by the plastic yield conditic~n, F(u, qh, q8 ) = 0, the 
size and shape of which depend on two internal variables qh, q8 , one 
for describing the increase of strength due to hardening and one for 
describing the degradation of strength due to tensile softening. In 
the case of plastic loading, the direction of the plastic strain rate is 
governed by the non-associated flow rule: 

. . 8Q . 
Ep = ,\ au = ,\ m (2) 

where Q denotes the plastic potential and A the plas~ic multiplier. 
The latter is determined with the help of the plastic consistency con­
dition, Fn+l ( .6..A) = 0, which assures that the constitutive behavior 
under persistent plastic deformations is consistent within the finite 
time interval 6-t = tn+I tn. 

3 .1. 2 Yield Function 

The curvilinear loading surface 
F(u, q1i, q8 ) = 0 maintains C1-conti­
nuity except for the apex in equitri­
axial tension. The deviatoric sect­
ions of the triaxial failure envelope 
in Figure 7 have a triangular shape 
in tension and low confined compres-
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sion which gradually transforms into a circular shape under increasing 
hydrostatic pressure. 

3.1.2.1 Strain Hardening 
the hardening regime, the plastic yield condition 

. ( ~ - ea )O'. 
F(~, p, B, k(q1i,. 0) = pr(B, e) - P1 { 

6 
_ea + 

( 
~ - 6 ) f3(k) 0 

~o-6 

is a function on the Haigh-Westergaard stress 

three stress invariants, e = ~' p = /2];, 
Hardening is controlled by the normalized .L.L<CA•.L·uc,vJ. ............ r.. 

k( qh, e) which varies between 0 ~ k ~ 1, where qh corresponds to 
equivalent plastic strain, and where e introduces effect 
static stress on the nonlinear hardening response. 
accounts for pressure-sensitivity the triaxial concrete 
where for instance a = 0.5 spans a failure surface the 
triple symmetric paraboloid. 

Strain hardening is governed by the exponent the 
function in 3, where 

(1 ·- k2 ) 

{3(k) = 0.25( 2) 
1- k0 

is a function of the hardening parameter, k = , where 

2 
k(q1i, e) = hn(O (1 - ko) ( J2hn(e)qh - qh) + 

e 2 e 
h n ( ~) = A1i . ( - ) + Bh ( i) + ch 

According to 4, the exponent {3( k) the term 
yield function varies from 0. 25 to zero as k0 < k ~ 1. When {3 O, 

compression cap fully opens up the compressive 
(corresponding to () = 60°) of the surface reaches 
ure envelope as depicted Figure 8 (a). Thereby 
meridian of the failure surface passes through the 
compression. 
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Failure Surface 

Loading Surfaces 
0.60 

2.0 

0.20 

0.0 '--'---"-----'-'--~----U~__J 0.00 .. 
-1.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 0.0 

Figure 8 (a) Strain Hardening Meridians. (b) Strain Softening Meridians. 

3.1.2.2 Strain Softening 
stress reaches the failure surface, then the 

gress1ve 
condition 
variable 1 ~ 

the hardening term becomes inactive. 
triaxial tension mobilizes softening of yield 

6 which is augmented by the normalized decohesion 
E,) ~ 0: 

( 
~ - E,o )a 

F(~, p, B, c(qs, 0) = pr(B, e) - Pl { 
6 

_ f,o 

c) ~0 a (~c - ~)
2

} = 0 for f, ~ f,c (6) 
-6 ~c 

locates the transition point of brittle/ ductile 
softening takes place. For f, :::; f,c, the surface 

failure envelope, and therefore, the behavior 
plastic in that regime. The change the 

to strain softening is illustrated 8(b), 
softening parameter c = c( q8 , 0 controls tensile 

of the equivalent tensile fracture q8 

1 

[5(~)2] SD(O 

• I 4 

where, = -Xllmtll 2 , sn(~) = As(E, - Bs ·ft) + 1. The soft-
ening variable is activated by the equivalent tensile fracture ....,..., .... ,...., .......... 
q8 from when the stress path reaches the failure 
Thereby mt extracts only tensile components from the gradient of the 
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plastic potential £c denotes the characteristic length 
energy-based strain softening, and s D ( ~) accounts 

confinement pressure on the slope of the softening 
value of the strain softening variable 1 < c( q8 , ~) ~ 0 
to the state of decohesion from one to zero. 

3.1.3 Plastic 
non-associated flow rule is adopted 

crete dilatation at different levels of '-''-'-L.LLL-L.L'-'•-LL ..... ,L, 

has the same structure as Eqns. 4 and 6, 
a being replaced by a. Experimental data on concrete ........... u,vv.1. 

dicate 0 < 6' < a. 

A single 
pression 

order to investigate the failure .......... ,~v,__L._., ... ,"·'-' ........ , 

concrete beam, a single 3-D finite is 
sion failure under representative boundary 

tensile test data (Ulfkj~r et al. 1997) are ,_,,,,,,,,n.• 

merical prediction the concrete model, the calibration 
adjusted by setting f~ = 22. 75 M Pa. The fracture 
N / m in the simulation 

element shows a value is 
energy of 97.09 N /min the experiment. Figure 9 
ference of ductility /toughness in uniaxial tension, 
model in Section 3.1 had previously been 
low strength triaxial tension and compression data 

parameter values in-use are summarized 
LL~·~ ~·~i is formulated in terms of 

t & t, the parameters are ------~· _ 

Table 1: Parameter Values of Concrete Model 

local compressive behavior the 
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beam under four-point bending is studied for two different conditions: 
(a) plain concrete under uniaxial compression representing the unre­
inforced mid-section of the beam, and (b) reinforced concrete under 
a?Cial compression with steel ratios Px = 1.65%, Py = 0.3%, and Pz = 
0.57%, representative for sections near the loading point with axial 
rebars and stirrups. Thereby, the 3-D simulations are carried out on 
a single brick element, when plain concrete under axial compression 
is compared with the results of reinforced concrete. The uniaxial 
compression test denoted here as the plane stress case is idealized 
with the help of a single brick element and lateral stress-free bound­
ary conditions (a-y 0). The axial compression test denoted here as 
the plane strain case imposes an out-of-plane deformation constraint 
(Ey = 0). 

(a) Figure 10 ill us tr ates the compressive stress-strain response 
behavior of the plain concrete model under uniaxial compression 
(plane stress), and the experimental data in low /high friction case 
by Ulfkjffir et al.(1997). As expected from the tension test in Fig­
{ire 9, the softening branch of the numerical predictions show more 
ductile behavior than the test data. The tendency of diffuse axial 
splitting is indicated in Figure 13( a), and the variation of the nor­
malized localization tensor Qep = N · Cep · N versus N is shown in 
Figure 14 in terms of the angle B. The polar plot of the eigenvalues, 
,,\ = per of the localization tensor Q ep' represent shear /longitudinal 
wave velocities, Cij in Figure 15. Whereby the shear eigenvalue (in­
ner circle) degraded along two shear directions of e rv ±30°, and 
the in-plane longitudinal eigenvalue decreased in the form of an axial 
splitting mode where e = 0°. Thus combined with the result in Fig­
ure 14, it is noted that mixed compression-shear failur.e is likely to 
develop at the beginning of softening, but that axial splitting even­
tually dominates failure at the end of the softening branch, where all 
results in Figures 13, 14, and 15 are evaluated at the terminal point 
of the post-peak behavior. They clearly il~ustrate diffuse failure in 
the direction of axial splitting. Consequently, the cylindrical stress 
state in uniaxial compression leads to loss of stability (Hill, 1958), 
i.e. d2W = 0 marked by the symbol, •·in the stress-strain diagram 
without localization. 

In contrast, in plane strain, the in-plane response exhibits a local-
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ized failure mode depicted in Figures 13(b) and 
(} == 31°, 149°. Figure 11 demonstrates that the .l.V\JU,.1..1.,"U,IJJLV 

by the symbol, EB) takes place in the ascending 
normality non-associated flow. contrast value 

ond order work density only vanishes at the peak of the 
process is stabilized by the out-of-plane ~~~~~~~~·~~~~~~~ 
is interesting that the induced out-of-plane stress ay reaches 
of the axial stress as shown in Figure 11. When compared to 
unconfined case of plane stress, the plane strain constraint 
breaks the symmetry of the cylindrical stress state uniaxial com-
pression, and enhances the axial strength by 10 % above 
compressive strength f~ == 22. 75 M Pa. Note, the '-'VJ.J.J..l.Jl.l.vJ.J. ... ,_, ....... 

are relatively small because of the non-associated 
the elastoplastic concrete model. 

3.0 ..--...-~-......----~~-~---. 

- Numerical (G, -165.0 Nim) 
Experimental (G,=97.07 Nim) 

. 2.0 

'l 
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o. -20.0 

-30.0 

-40.0 --~~-~~~~ --~-~--'--' 
0.05 0.10 0.15 0.20 -0.012 -0.006 0.000 0.006 

l 
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Figure 9. Uniaxial Tension. 
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Figure 11. Axial Compression 
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Figure 13. Boundary con_ditions and Failure modes in 

(a) Plane stress, (b) Plane strain, and (c) 3-D reinforced concrete. 
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Figure 14. Localization Anaysis. Figure 15. Polar plots of phase velocities 

in uniaxial compression (Plane Stress) 

(b) For completeness, the effect of axial and transverse reinforce­
ment is examined in uniaxial compression. To this end, the con­
crete brick element is reinforced by distinct rebars along the edges 
according to the reinforcement ratios Py = 0.3%, Pz = 0.57%. The 
reinforced concrete element results in significantly higher strength 
and ductility values depicted in Figure 12, since failure develops 
only when the axial and transverse steel bars reach yielding. Sim-_ 
ilarly to the plane strain case, localization analysis in Figures 13(c), 
and 14 indicates that the slight difference in transverse reinforce­
ment (Py < Pz) leads to localized failure. This failure mode differs 
fundamentally from the diffuse non-localized failure mode in axial 
compression (Kang, 1997) of reinforced ·concrete columns with ax-

rebars and an equal amount of stirrups in both lateral directions 
(Py = Pz). In the current study the different amount of transverse 
steel in y- and z-directions induces different transverse confinement 
which breaks symmetry of the cylindrical stress state, and eventually 
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leads to Figure 12 
response curves in the y- and z-directions. 

Conclusions 

The analysis of an over-reinforced concrete 
bilities and of the fiber for:mulation when 
is failing in compression. The element is 'stress-based', 

elements are required to obtain a converged 
results of over-reinforced showed 

response sensitive to the softening 
to small imperfections can also develop. 
one- versus two- and three-dimensional analyses a 
model was introduced to explore the compressive failure 
reinforced concrete. The model accounts for the effect 

behavior of concrete terms 
triaxial concrete model was · 
tests which did illustrate the e<t- .... , • .,,...,..,. 

For the 3-D of compression 
concrete beam, further 

capture the compressive failure a variety of 
try (size effect) and concrete properties (normal, 
fiber-reinforced concrete). 

The first and last author gratefully acknowledge 
this study by the AFOSR, No. 

liaison of Maj. Chipley. 
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