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Abstract

Some possibilities and limitations of the discontinuous deformation
analysis in modelling concrete fracture are illustrated on several simple
case studies, in particular in tracing the transition from a continuum to
discontinuum. Computational issues involved are briefly reviewed and
the recent trend in recasting the original formulation in its more general
form as a manifold method is noted. Illustrative examples include the
Kitoh plain concrete beam and the RILEM pull-out benchmark
problem.
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1 Introduction

Discontinuous modelling frameworks have become increasingly
utilised in concrete fracture simulations, including the discrete element
method, rigid block method, lattice modelling and the discontinuous
deformation analysis. Originating in the field of rock mechanics, the
DDA analysis appeared initially (Shil988) as an efficient framework of
modelling jointed rock as a deformable blocky media.

The DDA method has recently been reformulated as a subset of a
more generalised framework, and the procedure is seen as an alternative
approach along with a number of approximation procedures suitable for
modelling discontinuous media. The most recent generalisation is the
Manifold Method (Shi 1997), which advocates very similar ideas as the
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ones used in the meshless methods (Belytschko et al 1994) and in the
method of moving least squares (Nayroles 1992), where the development
can traced back to early irregular finite difference schemes. Similar to the
meshless methods, the manifold method identifies the cover displacement
function and the cover weighting function, where the geometry of the
actual blocks is utilised for numerical integration purposes. The treatment
of discontinuities is envisaged in the same way as with meshless methods,
i.e. by introducing the concept of effective cover regions, where there is a
need for » independent covers if a cover intersects » disconnected
domains.

The commonality of the two approaches, where the meshless
methods stem from a continuum side and the manifold method from the
discontinuum end of the spectrum, indicates a possibility of a more
rigorous treatment in modelling of progressive discontinuities in quasi
brittle materials.

Computationally, the original DDA method is effectively as an
alternative way of introducing solid deformability into the discrete
element framework, where block sliding and separation was considered
along predetermined discontinuity planes. The original formulation was
restricted to simply deformable blocks (constant strain state over the entire
block of arbitrary shape in 2D), and the displacement field for each block
was described by the three displacement components of the block centroid,
augmented by the displacement field corresponding to the constant strain
state, denoted by the block deformation vector D,. Components of the

stiffness matrix and the load vector are obtained by the usual process of
the minimisation of potential energy, and the distinction is made between
the contribution to the potential energy of the whole system arising from
the internal strain energy of the block itself and the potential energy
associated with all contact constraints present.

Improved model deformability is achieved by either increasing the
number of block deformation variables (higher order DDA, where higher
order strain fields are assumed for blocks of arbitrary shapes), or by the so
called sub-block concept, in which a block is subdivided into a set of
simply deformable sub-blocks.

Minimisation of potential energy leads to a formation of a familiar set
of equations with » mixed degrees of freedom for every block
(displacement components of the block centroid and as many parameters
needed to describe the strain field).

The global stiffness matrix with (NB*n)*(NB*n) terms, contains n*n

submatrices K; and K for NB blocks
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where the nonzero submatrices Kij are present only if and when the

blocks i and j are in active contact, and I comprises deformation
variables of all blocks considered in the system.

2 Active Contact Constraints

Depending on the inter-block contact stress state, the contact
conditions either

e allow sliding with no penetration and no tension or
e impose a no sliding, no penetration and no tension condition.

These conditions can be interpreted as block displacement constraints,
which is algorithmically reduced to an interaction problem between a
vertex of one block, with the side of another

Assuming deformation increments of the two blocks are denoted by

D ; and D ; respectively, the penetration in the direction normal to the

block side can be expressed as a function of these deformation increments
by

T
d:A/L+G Di+HTDj (2)

Various algorithmic approaches can be identified depending on how
the imposition of the no penetration condition (i.e. 4 = 0 for all active
contacts) is imposed.

The simplest approach, initially utilised by Shi (1988) adopted the
penalty format, where the contact spring with a penalty stiffness p is
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placed between the vertex of one block and the side of the other, implying
a contact force equal to f = pd. The presence of penalty springs, at all
positions of active contact, contributes to the overall strain energy of the
system, which in turn affects the system stiffness matrix, as well as the
load vector. This formulation leads to a nonlinear iterative scheme

K +K(p.d(D)))D=F+E(p.d(D) ®

which proceeds until the global equilibrium is satisfied (norm of the out of
balance forces is within some tolerance) while at the same time a near
zero penetration condition is satisfied at all active contact positions. The
convergence process may sometimes be very slow, as both activation and
deactivation of contacts during the iteration process is possible. The
advantage of the penalty format lies in its simplicity, as the number of
system variables does not change and the changes of the secant stiffness
matrix are obtained iteratively by augmenting components of the stiffness
matrix with components arising from the potential energy of any active
contact penalty springs. The convergence of the solution algorithm
depends highly on the choice of the penalty term and the process may
often lead to i1l conditioned matrices, when the very large penalty term is
employed to ensure the penetration remains close to zero. However, a non
zero penetration is required for a contact force to be present at all. The
penalty formulation typically requires an auxiliary calculation of contact
forces, as a direct evaluation arising from directly multiplying a near
infinite penalty term with a near zero penetration at a converged state is
cleary very approximate.

In the Lagrange multiplier method, the Lagrange multipliers
associated with constraint equations can be interpreted physically as the
actual contact forces at all active contacts which are in turn additional
unknowns of the problem. The system of equations is augmented by the
presence of any active contact and the number of unknowns to be solved
for at every increment will clearly be variable as the solution progresses,
and contacts are activated and deactivated.

In the case of only contact between blocks i and j being active, only
one additional constraint equation exists, i.e.

M=ﬁ(A/L+GTDi+HTDj):O 4)

which in combination with (1) leads to
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The major disadvantage of the method is that every additional active
contacts leads to the introduction of an additional Lagrange multiplier

A; resulting in a continuous change in the number of system equations.
Upon convergence, the formulation satisfies the contact conditions exactly
(or within some small tolerance) , the contact forces are obtained directly
as a part of the solution vector and no auxiliary computations are needed
to evaluate the contact stress resultants.

The procedure has a major disadvantage as the resulting system
matrix contains a zero sub-matrix associated with 4, s and it may not be
positive definite, requiring the use of a special matrix pseudo inversion
procedure. ‘

The most advanced treatment of contact constraints in the DDA
context is the Augmented Lagrangian Method, which has been advocated
by Lin (1995) and Amadei et al (1995), where an iterative combination of
a Lagrangian multiplier and a contact penalty spring is utilised. The
ensuing iterative procedure, to obtain the correct contact forces, proceeds
until the penetration distance and the norm of the out of balance forces is
not smaller than some specified norm.

Consecutive iterates for A are obtained from
Ay =2, +pdD_) | ©)

where the penalty term acts as the solution accelerator parameter.
The contribution to the system potential energy from active contacts
(both Lagrange multipliers and penalty springs) leads to changes both in
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the system stiffness matrix, as well as the right hand side load vector. The
associated set of nonlinear equations can be written as

K+Kp.dp, JJD., =

F+F/(p,d(D))+F(4) ™)

which requires an update for 4,,; =4, + pd 'D . ) between each iteration.

As the value of the last iterate for 4; is known and appears on the right
hand side, the number of global unknowns does not change and the system
size to solve for the new iterate D;,; remains constant, comprising only

the block deformation variables. The components of the current stiffness
matrix are affected by the current solution vector _]_)_, (which describe the

current penetrations d (.]..).L ) at all active contact positions), whereas the
load vector comprises a contribution from the previous iterate of contact

forces A;. As the number of unknowns does not increase, the method

retains the advantage present the penalty method. The rate of convergence
of the ensuing iterative procedure to obtain the contact forces is clearly
controlled by the penalty stiffness term and the iteration process is ended
when the norm of the out of balance forces in between the two iterates is
less than a specified tolerance limit.

3 Fracturing in Discontionuous Deformation Analysis

The DDA formulation naturally deals with discontinuities along
block boundaries, in the sense of a Mohr-Coulomb (with or without the
tension cut-off) criterion. The algorithimic argumentation is simple, as the
normal and tangential contact springs, which are added to the system
whenever a vertex is in the vicinity of a vertex or a side of another block,
are released if a pointwise Mohr Coulomb or tension cut off condition (in
terms of stress resultants) is violated. It has already been said that the
improvements of the DDA formulation use various ways of enhancing the
description of the block deformability. Similarly to the combined
FEM/DEM formulations, the DDA sub-block framework assumes that
each block is subdivided into sub-blocks and the behaviour of each sub-
block is again restricted to the constant strain state. The additional
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constraint conditions in between sub-block boundaries remain valid at all
times and their sole purpose is to enhance the description of the block
deformability.

Block fracturing algorithm through block centroid has been proposed
recently by Lin in 1995, in the context of rock fracture, comprising again
the Mohr-Coulomb fracturing criterion with a tension cut-off, where the
newly formed discontinuities are introduced and which are further treated
in the same way as the original discontinuity planes.

Several discontionuous modelling attempts in  modelling
fragmentation of concrete structures and concrete protection covers have
been reported. Recently Kitoh (1997) conducted a series of block size
sensivity tests, exploring both the geometric size effect on fracture for
series of normalised plain concrete beams, as well as the influence of the
discretisation effect, resulting from different block sizes. Similar Voronoi
tessalation has been utilised to illustrate the potential of the DDA based
fracturing models.

Fig 2. Kitoh Plain Concrete Beam (h=100mm),
DDA coarser discretisation (130 blocks),
initial geometry and failure mode

Fig 3. Kitoh Plain Concrete Beam (h=100mm),
DDA finer discretisation (455 blocks),
initial geometry and failure mode
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Fig 4. Kitoh Plain Concrete Beam
Comparison of P-8 diagrams for the coarser and finer DDA
discretisation, together with RSBM failure load

The Kitoh plain concrete beam four point bending problem
(h=100mm) is here modelled with two DDA discretisations. The failure
load predictions from a course discretisation using 130 simply deformable
blocks is compared to the failure load prediction from a model comprising
455 simply deformable blocks and both results are set against the failure
load prediction reported by Kitoh. The block material characteristics and
the interface material law are identical in both cases

E=27.5 MPa
v=0.20
¢=0.0047 MPa
£=0.0029 MPa

¢=37°

which values correspond to the data adopted by Kitoh in his RSBM
analysis. The analysis has been conducted as force controlled, with an
adaptive load incrementation in approaching failure.
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Fig 5. Hypothetical Reinforced Concrete Beam
same geometry as Kitoh Plain Concrete Beam (h=100mm),
DDA finer discretisation, 455 blocks and failure mode

The DDA analysis of a hypothetical reinforced concrete beam (Fig 5)
comprises a steel/concrete interface law of ¢=0.00188 MPa, £=0.00145
MPa, ¢=22.5°, whereas the steel/steel interface is fixed, and the
concrete/concrete interface is identical to the plain concrete beam analysis.
Final failure mode indicates a shift of an initial tensile crack, due to the
bond slip failure on the concrete/steel interface.

Further example (Fig 6) illustrates the DDA discretisation (704
simply deformable blocks) of the RILEM TC90-FMA pull-out benchmark

problem and the final mode of failure, for the case of k=co, using the same
data.

Fig 6. RILEM Pull Out Test
DDA discretisation (704 simply deformable blocks) and failure mode
(material data same as Kitoh Beam)

885



4 References

Amadei, B , C. Lin, J. Dwyer (1996) Recent Extension to the DDA
Method, in DDA and Simulations of Discontinuous Media (Eds
Salami & Banks), TSI Press, Albuquerque 1996, 1-30

Belytschko T, Y. Lu & L. Gu 1994. Element Free Galerkin Methods, Intl
Journal for Numerical Methods in Engineering 37: 329-356

Chen G, Y. Ohnishi & T. Ito 1997. Development of High Order Manifold
Method, in Y. Ohnishi (ed) Proc ICADD-2 Conference on Analysis
of Discont Deformation, Kyoto University, July 1997: 132-154

Ghaboussi, J. 1988. Fully deformable Discrete Element Analysis using a
Finite Element Approach, Intl Journl of Comp and Geotech 5: 175-195

Goodman, R. E., R. L. Taylor, & T. Brekke 1968. A model for mechanics
of jointed rock, Jul of Seil Mech and Found Div Proc ASCE 94, SM3

Ke, T. 1996. Artificial Joint Based DDA, in Salami & Banks (Eds) DDA
and Simul of Discontin Media, TSI Press, Albuquerque 1996: 326-
333

Kitoh, H. et al 1997. Size Effect Analysis of Plain Concrete Beams by
using RSBM, in Y. Ohnishi (ed) Proc ICADD-2 Conference on .
Analysis of Discont Deformation, Kyoto University, July 1997: 373-382

Lin, C. 1995. Extensions to the DDA for Jointed Rock Masses and
other Blocky Systems, PhD Thesis, University of Colorado, Boulder

Nayroles, B, G. Touzot & P. Villon 1992. Generating the finite element
method by diffuse approximation and diffuse elements, Journal of
Computational Mechanics 10: 307-318

Shi, G. H. 1988. Discontinuous deformation analysis - 2 new numerical
method for the statics and dynamics of block systems, PhD thesis,
Dept Civil Engng, Univ of California, Berkeley

Shi G. H. 1997. Numerical Manifold Method, in Y. Ohnishi (ed)
Proceedings ICADD-2 Conference on Analysis of Discontinuous
Deformation, Kyoto University, July 1997: 1-35

886




