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Abstract 
Some possibilities and limitations of the discontinuous deformation 
analysis in modelling concrete fracture are illustrated on several simple 
case studies, in particular in tracing the transition from a continuum to 
discontinuum. Computational issues involved are briefly reviewed and 
the recent trend in recasting the original formulation in its more general 
form as a manifold method is noted. Illustrative examples include the 
Kitoh plain concrete beam and the RILEM pull-out benchmark 
problem. 
Key words: case studies, Kitoh plain concrete beam, RILEM pull-net 
benchmark, discontinuous deformation analysis DDA 

1 Introduction 

Discontinuous modelling frameworks have become increasingly 
utilised in concrete fracture simulations, including the discrete element 
method, rigid block method, lattice modelling and the discontinuous 
deformation analysis. Originating in the field of rock mechanics, the 
DDA analysis appeared initially (Shi1988) as an efficient framework of 
modelling jointed rock as a deformable blocky media. 

The DDA method has recently been reformulated as a subset of a 
more generalised framework, and the procedure is seen as an alternative 
approach along with a number of approximation procedures suitable for 
modelling discontinuous media. The most recent generalisation is the 
Manifold Method (Shi 1997), which advocates very similar ideas as the 
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ones used in the meshless methods (Belytschko et al 1994) and in the 
method of moving least squares (Nayroles 1992), where the development 
can traced back to early irregular finite difference schemes. Similar to the 
meshless methods, the manifold method identifies the cover displacement 
function and the cover weighting function, where the geometry of the 
actual blocks is utilised for numerical integration purposes. The treatment 
of discontinuities is envisaged in the same way as with meshless methods, 
i.e. by introducing the concept of effective cover regions, where there is a 
need for n independent covers if a cover intersects n disconnected 
domains. 

The commonality of the two approaches, where the meshless 
methods stem from a continuum side and the manifold method from the 
discontinuum end of the spectrum, indicates a possibility of a more 
rigorous treatment in modelling of progressive discontinuities in quasi 
brittle materials. 

Computationally, the original DDA method is effectively as an 
alternative way of introducing solid deformability into the discrete 
element framework, where block sliding and separation was considered 
along predetermined discontinuity planes. The original formulation was 
restricted to simply deformable blocks (constant strain state over the entire 
block of arbitrary shape in 2D), and the displacement field for each block 
was described by the three displacement components of the block centroid, 
augmented by the displacement field corresponding to the constant strain 
state, denoted by the block deformation vector Di. Components of the 
stiffness matrix and the load vector are obtained by the usual process of 
the minimisation of potential energy, and the distinction is made between 
the contribution to the potential energy of the whole system arising from 
the internal strain energy of the block itself and the potential energy 
associated with all contact constraints present. 

Improved model deformability is achieved by either increasing the 
number of block deformation variables (higher order DDA, where higher 
order strain fields are assumed for blocks of arbitrary shapes), or by the so 
called sub-block concept, in which a block is subdivided into a set of 
simply deformable sub-blocks. 

Minimisation of potential energy leads to a formation of a familiar set 
of equations with n mixed degrees of freedom for every block 
(displacement components of the block centroid and as many parameters 
needed to describe the strain field). 

The global stiffness matrix with (NB*n)*(NB*n) terms, contains n*n 

submatrices Ku and K ij for NB blocks 
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nonzero submatrices are present 

blocks i and j are active contact, and 
variables of blocks considered system. 

Depending on the inter-block contact stress 
conditions either 

contact 

• allow sliding with no penetration and no tension or 
• impose a no sliding, no penetration and no tension /">/H:'lf'i

7
.,.

7 fl•"" 

These conditions can be interpreted as block U.J.u•v ...... ".,.1"" ...... ..,J, .... 
which is algorithmically reduced to an interaction .... "".,,,...,,,,..,.rn 

vertex one with the side of ......... ,...+h,,,.,.. 

Assuming deformation increments the two blocks are ............... ...., ...... ,~ 

and respectively, the penetration the ............ ..,...,.,,,"-' 
side can be expressed as a function of these r1t:>T'A1"'1'1,...<:l!T 1 '""n 1 nr·~"''"m""nt-" 

by 

I + 

Various algorithmic approaches can be ........... , .... _ ... J ... LJ .... ,u. ...... .,If-' .. , .................. ,... 

imposition no penetration condition (i.e. d = 
contacts) is .............. _,...,.., . ....,"" . 

................ IJ ......... : .... approach, initially utilised by 
the contact lS 
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one block the side of other, implying 
The presence of penalty springs, at all 

""'"',_,, ... ....., ........ contributes to the overall strain energy of 
turn affects the system stiffness matrix, as well as 

JLVJ.H.LYH, ........ .,._,u_ leads to a nonlinear iterative scheme 

(3) 

equilibrium is satisfied (norm of the out of 
some tolerance) while at the same time a near 

is satisfied at active contact positions. 
sometimes be very slow, as activation 

contacts during the process is possible. 
the penalty lies its simplicity, as the number of 

\T<:lf''
1 t:1'""• 1

Pc does not change and changes of the secant stiffness 
by augmenting of the stiffness 

V'VJ'-'-'""-'V'-'''"'H""' arising from potential energy of any active 
springs. The convergence solution algorithm 

'"''",."'"'-'-'"'""' of the penalty term the process may 
....,...., ......... u ..... VJl ... ..., .... matrices, when the very large penalty term is 

penetration remains close to zero. However, a non 
a contact force to be present at all. 

requires an auxiliary calculation of contact 
ansmg directly multiplying a near 

a near zero penetration at a converged state is 

method, the Lagrange 
"""'""·JI.·:"''· ......... "'. equations can be interpreted physically as 

active contacts which are turn additional 
...,..., ....... ._JLJL• The system equations is augmented by 

active contact and the number of unknowns to be solved 

I + 

clearly be variable as the solution progresses, 
deactivated. 

+ )=0 

leads to 
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The major disadvantage of the method is that every additional active 
contacts leads to the introduction of an Lagrange u . .u.~.11.-.l!JU.''-'• 

Ai resulting in a continuous change the number of system ...,y ...... ua.J.V.lll..:1· 

Upon convergence, the formulation satisfies the contact conditions exactly 
within some small tolerance) , the contact forces are obtained 

as a part of the solution vector and no auxiliary computations are .1u.""'""""'"'u 

to evaluate the contact stress resultants. 
The procedure has a major disadvantage as resulting 

matrix contains a zero sub-matrix associated with ;ii s and it may not 
positive definite, requiring the use of a special matrix pseudo 
procedure. 

The most advanced treatment of contact constraints in 
context is the Augmented Lagrangian Method, which has been advocated 
by Lin (1995) and Amadei et al (1995), where an iterative combination 
a Lagrangian multiplier and a contact penalty spring is utilised. 
ensuing iterative procedure, to obtain the correct contact forces, proceeds 

the penetration distance and the norm of the out of balance forces is 
not smaller than some specified norm. 

Consecutive iterates for 'A are obtained 

/Li+1 =A-,+ pdlD. ) ~l+l 

where the penalty term acts as the solution accelerator parameter. 
The contribution to the system potential energy from active contacts 

(both Lagrange multipliers and penalty springs) leads to changes 
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current 

+ ) 

components of 

current solution vector 
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vector. 

iterate of contact 

process is 
two iterates is 



between 
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Fig 4. Kitoh Plain Concrete Beam 
Comparison diagrams for the coarser and finer DDA 

discretisation, together with RSBM failure load 

plain concrete beam four point bending problem 
modelled two DDA discretisations. The failure 

a course discretisation using 130 simply deformable 
""'Y!int:'l11"""•£1 to failure load prediction from a model comprising 

deformable blocks and both results are set against the failure 
prediction reported by Kitoh. The block material characteristics 

interface law are in cases 

E=27.5 

c=0.0047 
ft=0.0029 

values correspond to the data adopted by Kitoh his RSBM 
analysis has been conducted as force controlled, with an 

incrementation in approaching failure. 
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Fig 5. 
same geometry as 

DDA finer discretisation, 

The DDA analysis of a 
comprises a steel/concrete . .-.t-t::. .. ..-,.,,,.,.""' 

MPa, cp=22.5°, 
concrete/concrete is ,,,""' .... ..-.,~ ... 

failure mode indicates a 
bond slip on the ,.,.,.,,1',,.. .. ".r"' 1 cir"',"" 1 

Further example (Fig 
simply deformable blocks) 
-.,.r,,,~,,_.·m and the final 
data. 

Fig 6. 
DDA discretisation 

(material 
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