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Abstract

Rigid Bodies-Spring Model, abbreviated to RBSM, has been developed as a
computational model generalizing limit analysis in plasticity, in which a struc-
ture to be analyzed is idealized as an assemblage of rigid bodies connected
by normal and tangential springs. Thus, RBSM is so useful for fracture analy-
sis of concrete cracking, which can be regarded as a well-known discrete
crack model. In this paper, we present two numerical examples of fracture
analysis of concrete cracking due to a steel plate anchor; One is a pull-out
test of the T-shaped anchor, and the other is a direct shear test of the I-
shaped anchor, which is called a shear connector in composite construction.
Key words: cracking of concrete, anchor, Rigid Bodies-Spring Model

1 Introduction

A family of Rigid Bodies-Spring Model, abbreviated to RBSM, has been
developed by Kawai (1977) as a computational model generalizing limit
analysis in plasticity, based on the experimental evidence of solids under the
ultimate state of loading. In those modelling, the solid or structure to be
analyzed is idealized as an assemblage of rigid bodies connected each other
on their interfaces by normal and tangential springs introduced the mechani-
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cal properties. Thus, RBSM is so useful in essence for the analysis including
the discontinuous behavior such as separation that it can also be applied
sufficiently to the fracture analysis of concrete structures with discontinuity
due to cracking and slippage in concrete.

Therefore, introducing a strain softening curve dependant upon the con-
cept of fracture energy, we, Kitoh et al. (1997), have applied RBSM to a size
effect analysis of concrete beams without reinforcement, and then have ob-
tained the successful results.

In this paper, we present the following two numerical examples by us-
ing RBSM, where the fracture of concrete such as tensile cracking and shear
slippage can play an intensive role in the nonlinear behaviors of concrete
structures: First, a pull-out test of T-shaped steel plate anchor bolts was ana-
lyzed, the test which is analogous to that of RILEM TC-90 FMA reported
by Elfgren (1991). Second, we also carried out the analysis of a direct shear
problem of I-shaped steel plate anchors, those are commonly called shear
connectors in steel-concrete composite construction. In this second example,
the anchor was subjected to a horizontal load with respect to its longitudinal
axis, while the load was applied in the same direction of the axis of the
anchor in the first example.

2 Formulation of a Two Dimensional RBSM

We considered two rigid triangular elements as shown in Fig. 1. An arbi-
trary polygon of circle, of course, can be used instead of a triangular ele-
ment. They are assumed to be in equilibrium with external loads and reac-
tion force of the spring system which are distributed over the contact surface
of two adjacent elements. :

The rigid displacement field is assumed in each element in terms of the
displacement (z, v, ) of the centroid as shown in Fig. 1. More precisely
horizontal and vertical displacement U, V at the arbitrary point P can be
given by the following equations:

U=0 u (1)

10 —~(y-y)00 0

U={U,V, U, V,}’ 01 (x-x) 00 0

2=lho o 10 —(y-y,)
00 0 01 (x—x,)

T
u={u,v, 8, u,v, 6,}

where subscript I, Il or 1, 2 indicate element number 1 or 2, respectively. (x,,
yp) and (x, y,) are the coordinate values of the centroid of each element.
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(a) Degree of freedom (b) Deformed state (c) Projective length

Fig.1 Two dimensional rigid triangular elements

The relation of the displacement between the global coordinate system
and the local one along side 34 of the element is derived as follows:

U=R-U v)
I, m 0 0 l—cos(; x)'-y“/ly
o I,m,0 0 lz (x y) x43/134
U={U” Vio Uy, } R=lp ¢ Lmyi " m —cos(y X )= x g1,
0 0 lL,m
2 my=cos(yy)=y, /1,

where [, is the length of the side 34, x,=x,-x, the overbar indicates the local
coordmate system and R is a coordinate transformation matrix.

Using these displacements (U, V) with the local coordinate system, the
relative displacement vector & of the point P can be derived as follows:

5=M-U 3)
. 1010
§={6,, 4} 3M=(0 -10 ;]

Therefore, substituting Eq. (1) and Eq. (2) into Eq. (3), the following
relation with the rigid displacement field is easily obtained:

0=M'R-Q u=B-u , 4)

The stress - relative displacement relation in plane stress condition is
assumed as follows:

o=D 6§ | )

k, 0
~ " . (I-V)E ., _E
o={o, 7.} :D= {o ks)'k"'(1~2v)(1+V)h ST

where k_and k_ are the spring constant which resist normal and tangential
forces respectively on the contact surface between element 1 and element 2.
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Furthermore h=h +h, is the projected length of a vector connecting cen-
troids along the line perpendicular to 34, as shown in Fig. 1(c)

On the other hand, strain components are determined by using the finite
difference equation as follows:

€, 1 (6, 1
= = Tl 6
‘ (y] B+, } W : ©

5,

Based on the above preliminaries, the strain energy expression of the in-
plain element V can be obtained as the following matrix equation:

v=_L[5"D &s=1
lJl

u"[(B"-D-B)ds-u M
I

34

2

Applying Casﬁgliano’s theorem to Eq. (7) the following stiffness equa-
tion can be derived:

9V _

du

where K is a (6 x 6) symmetric matrix and P is a nodal load vector corre-
sponding to the displacement vector z in Eq. (1) defined as follows:

P:{Xp YI: M]:sz erMz}T (9)

K-u=°P &)

3 Coustitutive Law of Concrete

The broken line on Fig. 2 shows the uniaxial stress - strain curve of the
concrete. In the numerical calculations, this curved line is approximated ac-
cording to the trilinear solid line. In this paper, F_being the compressive
strength, the first yield level F_=0.5F , the second yield level F =095F,
and the reduction ratio of the stiffness /=0.5. After the second yielding at
(0.3%), F_, is maintained until collapse. Beyond this point, until reaching
2¢_, the stress decreases with a corresponding increase in the strain, and it
stays finally at 0.2F . The strain softening effect is thereby taken into con-
sideration. The tensile stress is released going along the linear function con-
necting with (¥, € ) and (0, ne_) is introduced where 7 can be determined by
fracture energy G, for instance, which is given as used by Rots (1992):

1 2G,

GF:-z—h-F,(n~I)ec, = n=m+1 (10)
t cr

where 4 is the projective length as shown in Fig. 1(c), which is a representa-
tive index of the element size in RBSM.
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Fy: Tensile strength

F: Compressive strength C: Cohension
E,: Modulus of elasticity ¢: Friction angle
. . . . Io3
€., Tensile cracking strain ‘ [53] ’L'
&.,;; Compressive ultimate strain F " 5] A
t '
ZECU gcu = € E ¢ +C
S N Ecr Nécy '
=< TTES ek m@| m 0 oo,
: / Fe2 el /I o
[Pl | o
N L PR/ _/
N\ /i ;
\ / =
e Fe2 [53]
Fe
Fig.2 Stress - strain relation for Fig.3 Yield and collapse surface
concrete for concrete

The shearing slippage surface is defined by Mohr - Coulomb’s criterion,
and after yielding, the associate flow rule is employed, and moves in the
surface. Based on the supposition above, Fig. 3 shows the yield and collapse
surface of concrete using RBSM. The state [0] shows elasticity, the surface
[1] is cracking, the state [2] is the condition where the residual stresses be-
come zero, in Fig. 3, that is a state of tension on the left side from ne_ . The
state [3] shows first yield, the surface [4] shows second yield, and the state
[8] is the normal strain having the condition reached at the strain limit of
Fig. 3. The surface [5] shows shear slippage. After this state, in case where
first yield compression of the state [3] has occurred, the state follows the
stage in the surface [53]

4 Nonlinear Analysis Algorithm

In concrete structures, shapes change as cracking develops, and then stress
is released on the cracking surface. The released stress or load leads to a
decline of convergence of solutions near and at the ultimate stage of loading.
To overcome this condition, Kawai et al. (1990), including some of us, pro-
posed an algorithm for material nonlinear analysis, in which 7. method by
-Yamada et al. (1968) was modified to add the released force to the remain-
ing load while counting the applied load, and to simultaneously take account
of the slip, cracking and compressive failure.

However, the algorithm is to be originally applied to an incremental load
method. This method is inadequate to simulate the crack propagation in de-
tail, because the cracking failure of concrete is brittle. The algorithm can
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Table 1 Details of the pull-out specimens

Size(mm) Spring Concrete Properties
J ; b I % F - F ] E - G Fl ocx | ¢* VE
Tag (MPa) | (MPa) | (GPa) | (N/m) | (MPa)| ()

#1 | 1503001001900} O |30.0} 3.0 30.0] 1004.14|37.0].167
# | 60 | 60 | 80 | 350 oo [343] 341294100 4.68]37.0].167

Note: * prescribed by ourselves, while the others were given by JCI(1993)

Pull-out Load: F

7
fd i

Fig. 4 Pull-out specimen Fig. 5 Mesh used in the analysis

also be applied to an incremental displacement method if the incremental
displacement is taken and external force. Thus, the following nonlinear analy-
sis was carried out to an incremental displacement method.

5 Pull-out Test of T-shaped Steel Plate Anchor in Coencrete

In the first example, the 2 tests to be analyzed were given as the Round
Robin Tests by JCI (1993). The details of two specimens are shown in Table
1 and Fig. 4. As for steel, material properties used were as follows: Modulus
of elasticity, Poisson’s ratio and yield point were 210 GPa, 0.3 and 400 MPa,
respectively. Furthermore, the meshes used are also shown in Fig. 5, those
are half regions of the specimens considering symmetry. As shown in Fig. 4,
a T-shaped steel plate anchor embedded in a concrete block was subjected to
pull-out force along its longitudinal axis, and the block was vertically sup-
ported by 2 stiff steel plates on parts of its top surface and also laterally
supported by 2 springs, those constants were K, on both of its side surface.

Figure 6 a) shows the obtained relation on #1 specimen between the non-
dimensional pull-out force and the upward displacement of the anchor at
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Fig. 6 Load - displacement relation

point A as shown in Fig. 4. Shaded regions in the figure indicate the experi-
mental results by JCI (1993). We adopted 3 vertical support conditions, those
were roller, pinned or fixed one. The influence of the support condition upon
the obtained solution was significant. Therefore, the solution with roller sup-
ports was close to a lower band of the experimental results, while that with
pinned supports was close to a upper bound of them.

Next, Fig, 6 b) shows the obtained relation on #2 specimen as same as
Fig. 6 a). We adopted 2 lateral spring constants; One was zero, and the other
was infinity. As same as the above example, the influence of the lateral sup-
port condition upon the solution was also pronounced. Thus the solution
with rigid lateral supports fairly agreed with the experimental results, whose
load carrying capacity was 2.5 times large as that without lateral supports.

Last, Fig. 7 compares cracking patterns obtained from the analysis and
an experiment by ourselves. It can be seen that the numerical result was
sufficiently trace the experimental one. Moreover, the steel plate almost
never deformed, while the deformation of concrete due to cracking was re-
markable as shown in the figure.
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Table 2 Material Properties

Concrete Steel Plate for beam elements*
Fo | Fr | E. | GF| ¢ ¢ v | B |G |4 | I be Mby
(MPa)| (MPa)| (GPa)| 0W/m)| MPa)| () (GPa) | (GPa) | (cm?) | (cm*) | &N) | (kNm)

210 181.0122.0] 1.45] 869 | 19.3
ditto. | ditto. | 14.3] 0.39] 561 | 8.12

Notes: E b’Gb’A b,I b’N by and M by are Elastic modulus, Shear rigidity, Cross sec-

45.113.76132.2] 100 | 6.23137.0}0.20

tional area, Moment of inertia, Yielding axial force and Yielding moment, respectively.
*Top numerals for the base plate, while bottom ones for the anchor.

X,y and 0 restrict

Base plat

Imposed Disp.
y 6 restrict :

—r b DI :
\ restrict <4 800 o 400 :1

X 1200

Fig. 8 Direct shear specimen (unit: mm; depth 250)

6 Direct Shear Test of I-shaped Steel Plate Anchor in Concrete

In the second example, the tests to be analyzed were carried out by Nippon
Steel Co. (1993) as a fundamental work for the design of a steel plate -
concrete composite immersed tunnel having 6 lanes of roadway and 520 m
in total length, now under construction in Japan. The outline of a specimen
is shown in Fig. 8, where a half region of the specimen is drawn considering
symmetry. Furthermore, the material properties are listed in Table 2. More-
over, the steel material properties used were same as those in the previous
example.

As shown in Fig. 8, a I-shaped steel plate anchor embedded in a concrete
block was subjected to lateral force due to pull-out action of a base plate.
Thus, the base plate had no restriction for out-plane deformation and the
anchor plate was under bending moment and shear force. In this example,
therefore, we alternatively attended to use beam elements instead of 2 di-
mensional elements for the steel plates’ part, since the plates were so thin
that their out-plane deformation mainly due to bending could be expected
not to be negligible. The mechanical properties of the beam element is also
listed in Table 2.
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Fig.9 Load - displacement relation
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Fig.10 Crack Pattern : Fig.11 Crack Pattern
(Numerical; Case B) (Experimental)

Figure 9 shows the load due to the imposed displacement - leftward dis-
placement at the point A in Fig. 8 relations obtained from the analyses and
the experiment. From the figure, it can be seen that the solution from the
analysis where the beam elements were used for the steel plate, called case
B hereafter, was more flexible and closer to the experiment result than the
another solution where 2 dimensional element were used for the plate, called
case A hereafter. This difference could be caused by the deformation of the
plate in case B to reduce the shear resistance of the anchor.

Next, the failure mode near the anchor obtain from the solution of case B
are shown in Fig. 10. In this figure, separating elements shows cracking,
while overlapping ones does crushing which indicates a bearing failure in
front of the anchor observed in the experiment. While the mode from the
experiment are shown in Fig. 11. Comparing between the figures, the solu-
tion could fairly trace the experimental result.
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7 Concluding Remarks

RBSM, introducing the concept of fracture energy, has successfully simu-
lated the brittle behavior due to concrete cracking through the two numeri-
cal examples demonstrated herein. Thus, we could verified the applicability
of RBSM to fracture analysis of concrete structures.
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