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Abstract 
Based on analysis of failure mechanisms of concrete at its internal 
structural levels, a fracture process model of concrete is proposed. Then a 
numerical method named Influence Factors Matrix method is developed 
and is used to simulate the effect of specimen' s size on the fracture 
behavior of concrete. 
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1 Introduction 

The internal structure of concrete is very complicate. It has been proven 
that it is helpful for concrete to subdivide the internal structure into three 
levels, i.e. micro-level, meso-level and macro-level according to 
Wittmann (1987). At micro-level the structure of hardened cement paste 
is studied. At meso-level the important structural elements are pores, 
cracks, inclusions and interface. At macro-level concrete is considered as 
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an elastic and homogeneous material in engineering applications. 
The key feature of fracture in concrete is the nucleation of relatively 

large fracture process zone (FPZ) around the crack tip. The failure 
occurring within FPZ can also be characterized by the three internal 
structural levels. At micro-level the intrinsic fracture process of concrete 
includes the break of Si-0 bond at the contact points of C-H-S sheets, 
cleavage fracture of CH crystalline and cracks along the hydrated cement 
particles. At meso-level the reinforcing phases such as aggregates oriand 
fibers are pulled out from matrix or/and broken. Therefore, it is 
appropriate to study the failure phenomena inside FPZ and to evaluate the 
effects of FPZ on the macroscopic fracture behaviors from viewpoint of 
internal structural levels. 

2 Fracture process model of concrete 

According to the analysis of failure mechanisms based on internal 
structure of concrete by Zhang and Wu (1997), a fracture process model is 
composed of the following hypotheses. 

1. Linear elasticity: Undamaged concrete body outside FPZ is assumed to 
be linearly elastic~ 

2. Criterion for emergence of FPZ: FPZ emerges as soon as the stress 
intensity factor K1 at crack tip is equal to the fracture toughness of 
cement matrix(K1c) 

(1) 

3. Criterion for saturation of FPZ: FPZ is saturated as soon as the crack tip 
opening displacement (CTODtip) is equal to the maximal pull-out 
displacement (wm) of reinforcing phase; 

4. The constitutive law of FPZ in concrete is simplified by the pullout 
force-displacement relationship 

F=f(w) (2) 

On the basis of the hypotheses above the fracture process of concrete 
can be described qualitatively. For example, fracture process of a notched 
three-point bended beam is illustrated in figure 1. 

(a) Firstly, when the load is relatively small, the stress intensity factor 
K1 at notch tip is less than the fracture toughness of cement matrix 
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(K1<K1c). According to hypothesis 2, no FPZ emerges. The notched beam 
behaves as a linearly elastic body and the load-deflection (or CMOD ) 
curve is linear. 

(b) Secondly, when the stress intensity factor K1 at notch tip is 
gradually increased and becomes equal to the fracture toughness of 
cement matrix (Kd, FPZ appears ahead of the notch tip. Hereafter load
deflection (or CMOD) becomes nonlinear. 

( c) During the development of fracture process zone, 

(3) 

where Ka and Kc stand for the stress intensity factors at the frontal end of 
FPZ caused by external force and closing force of reinforcing phase such 
as aggregates or/and fibers inside FPZ, respectively. 

(d) As FPZ develops, the notch tip opening displacement (CTODtip) 
increases. When CTODtip is equal to wm, FPZ is saturated. 

( e) Then saturated FPZ moves ahead as further extension of crack 

K1 =Ka <K1c j\ +-Notch tip 

CTOD,,,~rL 

(a) 

FPZ 

Kr=K1c -e: CTOD,,,=wm / ......-Notch tip 

.......,_.../ 

(d) (e) 

Fig. 1. Illustration of fracture process model of concrete 

3 Numerical method for simulation of fracture process of concrete 
-Influence Factors Matrix Method 

The fracture of concrete is a very complicate process. Inside the FPZ 
concrete, the closing force caused by aggregates or/and fibers is coupled 
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with the opening displacement at the zone acting the closing force. This 
coupling brings much difficulty to simulation and analysis of fracture 
process of concrete. In the present paper, a method named Influence 
Factors Matrix Method is developed to solve the coupling problem and to 
achieve the simulation and the analysis of :fracture process of concrete. 

3.1 Influence factor 
The concept of influence factor is illustrated in figure 2, where a crack is 
opened by external forces. A pair of forces P acting at site AA' on the 
crack surfaces influences the displacement at other sites on the crack 
surfaces. Take site BB' for example, the influence factor of site AA' 
on BB' is defined as 

b 

c 

Fig. 2. Illustration of influence 
factor 

(4) 

Fig. 3. Illustration of influence 
factors matrix method 

The displacement at site BB ' induced by forces at site AA' can be 
expressed as 

(5) 

According to Tada et al (1973 ), the influence factor between different 
sites on the crack surface in specimens with any shape has the form of 
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(6) 

where P and F are two pairs of forces acting at site AA' and BB' , 
and KF are stress intensity factors caused by the forces P and F, 
respectively. E stands for elastic modulus of the materials a~d c the length 
of crack. 

3.2 Influence factors matrix method 
The crack extension in figure 3 is taken into consideration, where the 
continuously distributed closing force in FPZ is simplified by discrete 
closing forces. If the spacing ( d) between discrete closing forces is 
sufficiently small, the error caused by the simplification could be 
negligible in the similar manner to finite element method. 

For the convenience of explanation, the crack extension in half infinite 
plate is analyzed. In figure 3, a 0 and a represent length of initial crack 
and extended crack, ar and d represent distance between the tip of initial 
crack and the first closing force site and the spacing between closing force 
sites. 

1. When P < ~ · ja; · K 1c , K1 < K1c, the initial crack does not begin to 
2<1> 

extend. 

2. When P ~ ~ · ja; · K 1c , K1 ~ K1c, the crack begins to extend, while 
2<1> 

the tip of the crack does not reach the first closing force site. In this case, 

P=~·Jci·K 
2<1> IC (7) 

a= a0 + L'.la 

where L:ia represents the extension of crack. 
3. When the crack tip extends into the closing force sites, 
a 0 + ar + (i +I)· d >a> a0 + ar + i · d, some closing force sites are 
activated. Here the force sites are numbered, the site of external load is 
given the number of 0, the closing force site nearest to the crack tip is 
numbered as 1, and the next closing force sites are given the numbers of 2, 
3 .... . fso represents the influence factor of 0# site on itself, f 101 

represents the influence factor of 0# site on I# site, and so on. 
When the crack tip extends between the i and i+ 1 site, the opening 

displacements at the force sites are 
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W p= fso · p + fIOl ·Fl + fI02 · F2 +· · ·+fIOi ·Fi 

WI= fIOl · p +fsl°Fl + fI12 · F2 +· ·+flli ·Fi 

w 2 = f102 · P + fm · F1 + fs2 · F1 +· · + f12i · Fi (8) 

where wp,w1,w2 ...... wi are the opening displacements at force sites, P 
stands for external force, F 1 F2 •....• Fi are closing forces. 

Then, the stress intensity factor (K1) is obtained as, 

KI= Kp + KF1 + KF2 +··+KFj 

=Ap ·P+B1 ·F1 +B2 ·F2+··+Bi ·Fi 
(9) 

where, Ap, B1, B2 ...... Bi are the stress intensity factors due to unit external 
force, 1 # closing force, 2# closing force ..... .i# closing force. 

The relationship between the closing force and the crack opening 
displacement can be represented by a function, 

F = f(w) (2) 

or its inverse function 

w = g(F) (10) 

So coupled equations with i+ 1 unknowns can be composed, as follows; 

fw1 • P + fs1 • F1 + fm · F2 +· · +fm ·Fi = g(F1) 

frn2 · p + f112 ·Fi+ fs2. F1+··+f12i. Fi= g(F2) 

fro3 · P + f113 • F1 + f123 · F1+··+fl3i ·Fi= g(F3) 

fIOi • p + fili · Fl + fI2i · F2 +· · ·+ fsi · Fi = g(Fi) 

Ap ·P+B1 ·F1 +B2 ·F2 +··+Bi ·Fi =K1c 
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By solving these equations the i+ 1 unknowns P, F1' F2 ...... Fi can be 
determined. Then we can calculate the opening displacement at external 
force site and the closing force sites. the opening displacement at 1 # 
closing force site (w1) is larger than the maximal opening displacement 
( w m), 1 # closing force site is deactivated~ and abandoned. Then the 
number of the remaining closing force sites is re-arranged and coupled 
equations with i unknowns are composed again. By solving these 
equations, P, F1 .•..•. Fi-I and wp, w 1 •...•. wi-i are determined. Comparing w1 

and wm again, if w1>wm, repeat the above procedure until w 1:S;wm is 
satisfied. By gradually increasing the length of the crack, the external load, 
displacement, the crack profile and the evolution of can be 
determined, and the fracture process of concrete is simulated. 

4 Applications 

comparing the theoretical results on the fracture process of concrete 
and experimental results, the effects of material and geometrical 
parameters on the fracture behavior can be quantitatively studied. It may 
provide some theoretical clues for new concrete materials research and 
improvement of design methods of concrete structures. Here the effect of 
specimens' sizes on the fracture behavior of concrete is studied using 
above-mentioned fracture process model. 

,-----,--....,.--,-,--.-.--.,...,..,---...---.---..-......-.-..-n Parameters used in calculation: 

0.01 

am = 2.5MPa, w m 3.2mm, 

Kie= 0.5MParm,E = 20GPa, 

Bazant' s size effect law: 

~ 
vn<·~ 

0.1 

B·ft = 6MPa, 

0.58m 

1 

Height [m] 
10 

Fig. 4. Size effect of nominal flexural strength of geometrically 
similar three-point bended specimens 
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The simulated results on nominal flexural strengths of geometrically 
similar three-point bended specimens are represented by the dots in Figure 
4. Parameters used in calculation are shown in the figure. The solid and 
dashed lines represent the size effect law of LEFM and Bazant (19~4), 
respectively. The simulated results on the size effect of flexural strength 
are in good agreement with Bazant' s size effect law. 

As the research on the size effect is going further, much more attention 
is being paid to the non-geometrically similar size effect of concrete' s 
strength. Because defects in the concrete structures or member are not 
always proportional to the size of the structures, the non-geometrically 
similar size effect of concrete's strength is more practical than the 
geometrically similar size effect. 

Kim's size effect law: 
,........,......,.......,-,-,.--~--1 

---.. 

B·f1 
Bft = 6MPa, 

A0 · da = 0.03m 

cr 0 = lMPa 

--------) -------------------! .. _____ ._ __________ _ 
Capinteri' s MFSL: 

CTN ft. (1 + l~t )1/2 

ft lMPa, Ich = 0.44m 

Parameters used in calculation: 
am = 2.5MPa, w m = 0.2mm 

K1c =0.5MParm,E=20GPa,a0 =8cm 

0.1 1 

Height of beam [m] 

Fig 5 Size effect nominal flexural strength of non-geometrically similar 
three-point bended specimens 

The solid rectangular dots in figure 5 represent the simulated results on 
the size effect of three-point bended beams with notches. Parameters used 
in calculation are shown in the figure too. The solid and dashed lines 
represent the size effect laws of Kim (1994) by the modification of 
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Bazant' s size effect law and Multifractal Scaling Law (MFSL) of 
Carpinteri (1996}, respectively. By comparing figure 4 and 5, it is found 
that the non-geometrically similar size effect is quite different from the 
geometrically similar size effect. In the case of geometrical similarity, 
nominal flexural strength of concrete decreases with increase. of 
specimen' s size. As the size of specimen becomes very large, the size 
effect is the same as that of LEFM. But in the case of non-geometrical 
similarity, nominal flexural strength of concrete decreases with increase of 
specimen's size, and approaches some constant value as the size of 
specimen becomes very large. By observing figure 5, the simulated 
results are in better agreement with the size effect proposed by Kim and 
Carpinteri. 

5 Conclusion 

the paper, a fracture process model of concrete and a numerical method 
named Influence Factors Matrix Method are proposed and used to study 
the geometrically and non-geometrically similar size effect of nominal 
:flexural strength of concrete. The size effect by the simulated results is 
comparable to the size effect laws of Bazant, Kim and Carpinteri. it 
suggests that the fracture process model and Influence Factors Matrix 
Method are useful for the analysis of fracture behavior of concrete. 
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