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Abstract 
Multi Equivalent Series Phase Model is derived as a 

macroscopic constitutive law to describe the size effects 
localization in concrete. Fracture localization at the ................ ,. .......... ,.,. ..... ,,.,, 
modeled using a series phase consisting of fracture and phases. 
Based on a constant plastic fracture energy law, the stress-strain softening 
relations of the series phase are converted into those of an series 
phase taking into account the length of the series phase. As load-carrying 
mechanism of concrete, a number of equivalent series phases are assumed to 
be distributed with various orientations the concrete, and strains 
series phase are kinematically constrained by the ................... ,.;...,...,~..,.L..., 
The resulting incremental stiffness tensor yields an integral 

orientations of equivalent series phases; this is very o.uu ........ u,..._ 

Enhanced Microplane Concrete Model. It is shown that the 
good predictions of the experimentally obtained size effects on concrete 
constitutive relations. 
Key words: Constitutive model, microscopic damage, size 
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1 Introduction 

Mechanical models and constitutive laws for concrete materials must be able 
to describe nonlocal softening behavior when we numerically simulate 
softening fractures and damage localization, which relate to size effects and 
size dependency. Constitutive laws for continuum mechanics in a narrow 
sense are regarded as local, while constitutive laws able to describe size 
effects and nonlocal properties of materials are regarded as nonlocal 
constitutive laws. The crack band model for nonlinear fracture mechanics, 
Bazant and Oh (1983), is considered a simple, nonlocal constitutive model 
for tensile cracking (mode I fractures). However, it is not that easy to 
establish a general nonlocal constitutive model for concrete with 
applicability to multiaxial stress conditions including compression and shear 
stresses (rotating principal direction). In this study the Multi Equivalent 
Series Phase (MESP) Model, Hasegawa (1992, 1993), is derived as a 
nonlocal constitutive law suitable for describing size effects due to fracture 
localization in concrete under general multiaxial stress conditions. 

2 Fracture localization at the microscopic level 

Since the presence of coarse aggregate particles makes concrete a 
heterogeneous material, fracture localization and strain softening occur at a 
microscopic level in a relatively stable and distributed manner prior to 
macroscopic softening fractures. Although these types of microscopic 
behavior should be described by appropriate micromechanics models, we 
assume a much simpler mechanical field as shown in Fig.l(a); distributed 
microscopic fracture regions are modeled by independent fibers constrained 
by certain conditions as a means to relate the microscopic and macroscopic 
levels. When a softening fracture occurs in each fiber, the microscopic 
fracture localizes into a fracture phase within the fiber while an elastic 
unloading takes place in the remainder of the fiber (the unloading phase). 
The result is a microscopic strain localization in which the unloading phase 
supplies the released elastic energy to the fracture phase once the 
microscopic peak stress of the fiber is reached. We assume that the stresses 
in each phase depend on the corresponding strains of the phase, and that 
there are unique relations between them that we call phase-constitutive laws. 
Because of series coupling, the stresses aF and au in the fracture and 
unloading phases are equal. However, the strain su of the unloading phase 
is much smaller than the strain £F of the fracture phase. We define the series 
phase as the series-coupled combination of the fracture and unloading 
phases. The strain £L of the series phase is calculated from £F and £u, in 
which superscripts F, U, and L refer to the fracture, unloading, and series 
phases. The equilibrium and strain compatibility conditions of the series 
phase are described by (1). 
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(a) Random distribution (b) Series phases (c) Idealized series phases 
of series phases at the centroid 
1. Fracture, unloading, and series phases a concrete 

= O"u 

eFzF +euzu 
zL 

which l F, l u, and are the lengths 
phases, respectively. This series coupling model consisting 

unloading phases is considered the basic 
concrete at the microscopic level, and 
equivalent series phase using a simple .uv.u .. n.J•F-,.._,._._..._ .............. ,,v .............. .., ... , ..... 'U,...,_ .._.. . ..., .. "' .. ,, ...... ._,..., .... 

later. 
The MESP Model is a nonlocal macroscopic vv.1..11.0•-.L'-""'-L.L 

assuming that a number of equivalent series phases are ...,. .... " ........... v._._ ... ..., .... 

various orientations the concrete. derive the ....... v ..... ..., .. 

volume element, randomly oriented series phases 
collected at the of the element as 

length of each series phase is '"'"'"'' ... '"'"''"' ... ·'"""' ...... 
centroid and element boundary, 

l(c)). On the other hand, the length 
same for all the series phases. 

3 Equivalent series phase 

The strain softening response of the series 
softening behavior of the fracture 

behavior of the unloading phase .... .., ... ,,,.., ....... Jl.,L•F>. 

compatibility conditions given by (1). 
stress-strain softening relation for the series 
to another since each series has an 
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a static one) relates the series 
than the fracture and U..U.J.VU.UU .. <1;;;, IJLUA•:H .. n.:J 

strain phase p; Eo = 

E refer to 

as 
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(, 
2 

(5) 

vF(zF)/vL(zL) in (5) is estimated using (6), and d = 1 is 
study. 

--=(::J (6) 

..,.. ....... ..,. ............... ,., ... depending on the shape of the series phase; and 
phase is treated as a cylinder with a uniform circular 

section or as a cone with various circular sections. 

4 

Fig.3 softening responses of equivalent series phases are 
of series phases composed from the behavior 

These results show the strain ""T,_,,. .... , .... ,.,. 

series phase is almost identical to 
a snapback as in the case of zF /IL= 0.03, 

is not applicable since a kinematic .... ~, .... ...,, ... , ............. ~ 
.......... ,._, ...... .,., ..... as described later. 

..... v ...... _...,...., ...... macroscopic constitutive model, i.e., the MESP Model, 
....... TT1'·•

1r" shown in Fig.4(a), every series phase with 
between the centroid of the element and the ..., ...... ,, ................... ... 

an equivalent series phase. The stress-strain 
equivalent series phase depends on the 

is determined using (5). 
phase a normal strain £ ~ in the direction n 

strains c:!fx and c:!f.M in the directions of 
m are considered. The unit coordinate vectors n, 

...... ~.LA ...... ~ .. to one another (Fig.4(a)). As in the .. _,._ ....................... ,, ..... 
..... .., .... ....,.., ............ ...,, '-""""" ......... ...,, ... ...,, (EMPC) Model, Hasegawa (1995, 1997), a .. ...,., ....... J'VJl.A ...... 

..,~ ............... ..., .................... to relate the macroscopic strain tensor 
series phase, i.e., the normal strain 

of the equivalent series phase are 

• E 1 ( ) , ETM = "2 minj + mjni £ij (7b) 

are components of the unit coordinate vectors n, k, 
indicial notation is used for tensors and 

to Cartesian coordinates xi, i = 1, 2, 3 (x, y, z). 
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Normal stress O'~ and shear stresses a;K and a;M of the equivalent 
phase mainly depend on the normal strain£~ and shear strains 
respectively. The incremental 
the equivalent series phase are 

the shear components in the K M directions: 
• E E E E

11 

E ( E E normal component. da N = CNd£N -da N =!NI £N,£L, 
• . E - E E E II - E( E K-shear component. darK - CrKd£rK - darK - fn £TK, 

M-shear component: da:M = c;~d£:M -daiM" = fii(c;M,s~) 
which C~, c;K, and CiM = incremental elastic Stiffnesses 

equivalent series phase; daf, da;K", and dO';M" = inelastic stress 

increments for the equivalent series phase; 1:i (£~,cf, si) = stress 
increment da~ expressed in terms of normal strain £~,the resolved 
strain £Z of the macroscopic strain tensor £ij, and the resolved lateral stress 

Sf of the macroscopic stress tensor aij onto the phase; and f ii ( £~, 
shear stress increment da~ expressed terms of shear strain £~ 
resolved normal stress S~ of macroscopic stress tensor onto 
phase (Ts= TK, TM). 

Since a uniform state of macroscopic stress and strain is assumed 
concrete volume element, and microscopic softening 
homogenized using the equivalent series phase, with the length of 

taken into account, we can use an arbitrary volume 
..., ....... ..., ........ to relate the responses of the equivalent series phases to 

macroscopic behavior. Here a sphere, with a radius , formed by 
equivalent series phases is considered (Fig.4(a)). Using the 
virtual work (i.e., the equality of virtual works 8Wv of the macroscopic 
stress tensor and 8WE of the stresses the equivalent series phases 

,.,.,.."',,.,..""of radius /E), We Can Write 
8Wv =OWE 

r=lE 0=2rc cp=n 4 
8Wv = J f J daij8£ij r2 sin¢d¢d8dr = 

r=O Jo=O ¢=0 · 3 
da .. & .. 

I) lJ 

£)WE = r0=2rcJcp=rc ( da~8£~ + + 
Je=O </J=O 

1 )3 . .a 

3 
sm<f>d<f>du 

which e and <P =the spherical angular coordinates (Fig.4); &ij, 
&iK, and &iM = small variations of the strain tensor and of 
strains. The function f(n) is a weight function for the fiber directions n, 

in general can be used to anisotropy of the material 
state. We will use /(n) = 1, which means isotropy. this study, two 

series phases with opposite orientations in the upper ( 0 s </J s n /2) 
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•. ,,u...,,,.....,..., are replaced, for simplicity, by a single 
average of their lengths. Then (9) is reduced to a 

.._..L>.''-''""'-'·'VJl.L<C<.i L.LJl'-'-',o;,LU.<,.LV.U over the hemisphere. 

4 

3 J
e=2rcf ¢i=rc/2 ( da~8£~ + daiK&iK 

8=0 ef>=O 

+dai-M&;.M )f(n) sin</Jd<jJd(} 

Expressing &~, , &i-M by (7), and substituting them 
phase-constitutive relations (8), we obtain an'"'"' .. ...,, ............... .., ............ 

macroscopic stress-strain relation 
(1 

+ ~(k1nj + kjn; )(k,n, + 

+ m,n, )c;M Jf(n) sin</Jd</Jd8 (I 

+ .!_(k.n. + 2 l J 

sin</Jd</Jd(} (1 

= lj2rc. 
is a local constitutive model derived by 

..., .................. ._, as planes (microplanes) of various n.n.P.nt·-::it-1'"'"" 

the EMPC Model results in a surface ...... .,..a.n-.. ,,,.. 

(1-4v0 )E0 1 E 
= --C (I- 2v

0
)(1 + v 0 ) - 3 TO 

series phase as 
= 3/2rc (11), the ...... L'-...,.._"'"''"' ....... ,."u ............ 

Model can be utilized as ILJ'LUCJL.~...,-~,, ........ ..,,..-~·t-nt-•·""" 

the MESP Model, which is a very attractive 
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0 exp.: h = 50mm -- analy .: h = 50mm 
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Fig.6. Responses equivalent series phases 
analysis 

approach since 
relations of concrete 

accuracy. We this in present 

5 Verification 
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0 exp.: Cle= 0 -- analy.: O'e = 0 

"' exp.: Cle =-3kgf/crn2 
- - -analy.: ac =-3kgf/cm2 

Ill exp.: Cle= --6 kgf/crn2 
-- --- -- analy.: Cfc = --6kgf/cm2 

8-400.--~~----.--------.15-400.---~~---.--~----. 
u ~~- u 
~ -300 "' -..:

111
• -. ·11. ~ -300 

..::.:: "'' '-,!ill ~ 
b'-200 "\ ~--

' 
~ 

02._0_1.._5_ ....... 10_ ...... 5_-11110--L-5--'-1'--0 --l._5___.-20 ·~ 020 15 10 5 0 -5 -10 -15 -20 

axial and lateral strains E3 , e1 ( 10-3
) axial and lateral strains E3 , £ 1 (10-3

) 

Height h = 100 mm (b) Height h = 200 mm 
Fig.7. ...._ ......... 1'L .... .4 ... compression analysis 

specimens of identical section ( 100 x 100 mm) but different heights h 
, and 200 mm). axial stress-strain relations are normalized by 
axial stress af:ak of each specimen, and the axial strain c;akso 

corresponding to the peak axial stress of the specimen with h = 50 mm. 
the analysis, length of the fracture phase is assumed to be 2lF = 
50 mm= 3dmax = 48 mm, which dmax is the maximum aggregate size. 

MESP Model can capture the decrease ductility with increasing 
specimen height. Fig.6 shows the normal, K-shear, and M-shear responses 
of equivalent series phases (integration points) 2, 3, and 14 (Fig.4) in the 
analysis. The increase specimen height causes more brittle softening 
responses equivalent series phases, and this results in brittle 
macroscopic behavior. 

shows the results of triaxial compression analysis along the 
compressive meridian in comparison with experiments by Kosaka et al. 

experiments concrete prism specimens of the identical 
mm) different heights h (I 00, and 200 mm) were 

tested under pressures a c of 0, - 3, and -6 kgf /cm 2 
. The 

of the fracture phase is taken to be 2lF = 100 mm =6.6dmax this 
........... '"'., ... ~ .......... the analysis underestimates the lateral strain the 

regime uniaxial compression as compared with the 
experimental results, the model roughly predicts the size effects on triaxial 
compressive softening. 

examine applicability of the model under shear stress with a rotating 
..., .... ,LA.., ........ ~ ... direction, the biaxial tension-shear analysis of Rots (1988) is 

this analysis, uniaxial tension up to the uniaxial tensile 
strength ft is first applied to a concrete volume element in x -direction . 

......... nc ......... ,,"' ... is immediately subjected to combined tension 
.... ..., • .,,.,.JL ...... JL.I..•= to L1£xx : L1£}')' : L\y xy = 0.5: 0.75: 1. Two sizes of square 

( x mm and 20 x 20 mm) with thickness 10 mm are 
considered, and the length l F of the fracture phase is assumed to be 21 F = 
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rolating crack model 
- multi-directional fixed crack a= 15° 

-- rotating and fixed crack models - - - - multi-directional fixed crack model, a= 45° 

-- MESP Model, 10 x 10 x JOmm 
. - multi-directional fixed crack model, a = 90° 

Cl) 

a'.$ 0.6 
b 
~ 0.4 

·~ 0.2 

-- --- -- MESP Model, 20 x 20 x JOmm 
--MESPModel, lOxlOxlOmm 

-- --- -- MESP Model, 

0.5 

~ 
- 0.4 

1:->i<' 0.3 

0
-2 o 2 4 6 s 10 12 14 

axial and lateral strains Exxf £ 10 , Eyy/E10 

Fig.8. Uniaxial tension analysis 

ea: rotating crack model 

0.5 1.0 

strain r xy I Ero 

Shear responses 
tension-shear 

ea : multi-directional fixed crack model, a= 15° 
ea : multi-directional fixed crack model, a= 45° 
ea : multi-directional fixed crack model, a= 90° 

-- ea : MESP Model, 10x10 x lOmm 
- - - ee :MESPModel, lOxlOxlOmm 

/ . / , 

---
0.5 1.0 1.5 2.0 

shear strain r xy I Ero 

Fig.10. Rotation of principal axes biaxial tension-shear 

10 mm in the MESP Model. Fig.8, 
using the MESP Model prior to the u.U . .W'\.J.U.J.. a.vJ.LLIJ.VJ..L 

along the tensile relation assumed 
used the rotating crack model and the 
which £ 10 is axial corresponding to ft. 

Fig.9, the shear responses obtained biaxial ... ..., ................. ·.u..'-"'" ......... 

using the MESP Model are compared the results calculated 
using the rotating crack and the fixed 
(a = threshold angle). It is 

the shear responses for both sizes are UJL.UCiiA•4.L 

achieved with the rotating crack model, which has 
simulating shear-tension failures of concrete, while 
fixed crack model, with larger values a, results 

1.5 2.0 

behavior. MESP Model can simulate size effects on shear"' .... ",.,.,... ... "' 
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Fig.9. 
() £ of principal stress and strain are 

'-'-'-'-'Jl.l..L'-';Uf,. 10x10x10 mm in r'O~Y\T"\-';IT1<;:'0n 
'-'"~·-... .11.Jlfo.. crack model and the 

..,..._ .. UUV.LIJ ........ stress and strain 
rotating crack model. This means that the Model 

......... 1-, .... v ............. """' of the rotating crack model, which has 
effective its application to fracture mechanics. 

6 

concrete at the microscopic level is ..... u .. <u· ......... ,,..., ...... 

the fracture and unloading phases, 
this series phase are converted 

using a simple homogenization .... u ... , ........ ,..., ...... 

Model is derived as a nonlocal ............ ,..,Jl,J'-''"'''-'1-1.1.'-' 

equivalent series IJ.11. ....... ,..., ..... ..., 

concrete. It has been °n ........ "'.., 

~~~~~~·~AA~ of the experimentally 'Jt.Jl,U..1..1 . .l'-'U. 

7 
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