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Abstract 
The finite element reliability method is used to study the evolution of 
localized damage in concrete considering a random damage threshold 
and random boundary constraints. The difference between deformation 
measures of selected locations on the solid is used as a state function at dif
ferent stages of the equilibrium path. The concrete fracture is described by 
means of a gradient-enhanced damage model. The boundary constraints 
are imposed through Lagrange multipliers. The influence of the horizon
tality of the upper loading plate in a direct tension test is presented as an 
example. 
Key words: Gradient-enhanced damage model, Finite element method, 
Stochastic imperfections, Reliability method, Lagrange multipliers 

1 Introduction 

Regularization forms an indispensable part in computational localization 
analysis, since it ensures that the mathematical description remains well
posed after the peak stress has been reached. When damage models 
are used, this regularization can be achieved by considering non-locality 
of the strains, either through weighting integrals (Pijaudier-Cabot and 
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Bafant 1987) or higher-order deformation gradients (Peerlings et al. 1996). 
A proper model of damage evolution is, however, not sufficient to simulate 
all the phenomena which can take place during failure of concrete. For 
instance, numerical analyses of tensile tests on double-edge-notched spec
imens can exhibit a symmetric damage pattern. This is in disagreement 
with experimental results, in which crack evolution from both notches 
is seldom observed. In finite element analyses of damage evolution an 
imperfection is used to trigger localization. Such an imperfection can be 
introduced by reducing the material strength at some locations or by im
posing boundary defects. The onset and evolution of damage is strongly 
influenced by imperfections, also in the physical reality. It is then meaning
ful to consider stochastic descriptions of the material as well as boundary 
imperfections in numerical simulations of concrete failure. 

The influence of stochastic material heterogeneities in the evolution of 
damage has been studied by Carmeliet and de Borst (1995) by means of 
Monte Carlo simulations and recently by Gutierrez and de Borst (1998) 
utilizing the reliability method. This paper presents an extension of the 
latter approach by considering stochastic variations in the boundary con
straints, which are imposed through Lagrange multipliers and can, e.g., 
consist of prescribed displacements, rigid rotations or elastic supports. 
The influence of boundary imperfections in the statistics of damage evo
lution is shown for a tension test on a double-edge-notched specimen. 

2 The finite element reliability method 

The statistics of the structural response upon a variation of the mate
rial properties can be studied by means of the finite element reliability 
method (Der Kiureghian and Ke 1988). The elaboration of this method 
for gradient-enhanced material models can be found in Gutierrez and de 
Borst (1998). A brief outline is given next. 

2.1 Basic strategy 
Consider a solid Q in which the material properties are formalized by 
a random field. This random field is discretized into a vector of ran
dom variables Y, which, without loss of generality, can be considered to 
be uncorrelated and standard normally distributed. For a given loading 
scheme, the equilibrium path q =(a,.,\) can be obtained with a non-linear 
constrained finite element method for each realization of Y, where a rep
resents the nodal displacement and .,\ is the load multiplier. Since Y is a 
random vector, the equilibrium path will be random as well, and a variable 
transformation can be defined 

Q = (A(Y), A(Y)). (1) 
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Uppercase characters represent random variables and lowercase charac
ters represent realizations of these variables. Functions can be defined 
of the equilibrium path to investigate characteristics of interest, like the 
peak load, the consumed energy or deformation measures. For a generic 
characteristic Z ( Q), the probability of exceeding a threshold zo would 
formally be expressed by 

P(Z > zo) = f
00 

f z(z) dz, 
lzo 

(2) 

where f z is the probability density function of Z. However, the distri
bution of Y is known instead of that of Z. Making use of the variable 
transformation (1) the probability (2) is recast as 

P(Z > zo) = { </>(y) dy, 
J z(q(y))>zo 

(3) 

where ¢ is the uncorrelated standard normal probability density function. 
The integral (3) is calculated by approximating the surface z(q(y)) = zo 
by a first or second-order surface at the closest point to the origin. When 
a first-order approximation is used, the probability that Z exceeds zo is 
given by 

P(Z > zo) = <I>(-{3) (4) 

where <P is the. one-dimensional standard normal cumulative distribution 
function and f3 is the distance from the most central point of z(q(y)) = zo 
to the origin. Accordingly, this point is called {3-point. 

Finding the /)-point is the crucial task in the reliability method. This 
is achieved by solving an optimization problem, 

{
minimize llYll 
subject to z(q(y)) = zo 

(5) 

Iterative algorithms are used to search the solution of (5), that need the 
evaluation of the gradient of z o q with respect to the basic variables y. 

2.2 Computation of the equilibrium path 
In a damage model the relation between stress and strain is expressed as 

u = (1 - w(K,))Dc, (6) 
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where o- is the stress tensor, e is the strain tensor, D is the linear elastic 
operator and w is the damage loading function which depends on the de
formation history K,. When a gradient enhancement is used, the behaviour 
of the parameter K, is governed by the Kuhn-Tucker conditions 

(7) 

and the initial value fi,o of K,. The average equivalent strain Eeq is obtained 
from the equation (Peerlings et al. 1996) 

(8) 

The local equivalent strain ceq is given by any suitable invariant of the strain 
tensor and ls is the internal length scale, which quantifies the regularizing 
effect of the averaging procedure. 

The equilibrium path ( 1) is computed by means of the finite element 
method. A system results of non-linear equations with an arc-length 
constraint to monitor the loading, 

Ta = l BT t+i\tu dQ - (l'1A + t>.)fd = O; 

r !J.)... = (t+[).h - hl Y!(t+[).h - h) - til2 = 0, 
(9) 

where the notation 1(t) = ty has been adopted for the sequence of events 
in a quasi-static process, B is the strain-nodal displacement matrix, a is 
the nodal displacement vector, f d represents the nodal design force vector 
and 1JI' is a matrix to select the degrees-of-freedom which contribute to the 
increment of arc-length 11l. Equation (8) is approximated with the finite 
element method as well, yielding the system 

(10) 

where N contains the shape functions and e is the vector of nodal val
ues of the averaged equivalent strain. Since the equivalent strain and the 
displacement fields are coupled, equations (9) and ( 10) are solved simulta
neously with the Newton-Raphson method. The Jacobian transformation 
of the residual r defined as 

r = ( ~=) 
r !1>. 

(11) 
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can be split in blocks as 

[ Kaa 
Kae -fdl 

K= Kea Kee 0 . (12) 

(t+ilh - h )T YI 0 0 

Expressions of these blocks can be found in Gutierrez and de Borst (1998). 

2.3 Computation of the gradient of the equilibrium path 
In order to find a solution of (5), the gradient or z is needed with respect 
to the material properties. Since z is a function of q, this gradient is 
expressed as 

(13) 

The gradient of z with respect to q can be evaluated explicitly. The 
gradient of q, instead, must be computed with aid of the implicit function 
theorem at an equilibrium point. For a single component of y we have 

8r = O. 
oyi 

(14) 

The residual r depends on the variable Yi explicitly, e.g., through the linear 
elastic operator in equation (6), as well as implicitly, through the nodal 
variables a and e and the loading factor .L).,\. Differentiation of equation 
(14) leads to 

[\7ar,\7er,~] 
K 

0 t+i'.lte 

8yi 

8.L).). 

8yi 

+ 8r I = 0 
0Yi (a,e,~,\) 

so that solution of equation (15) yields the required derivatives, 

at+Me 

8yi 

8A'A 

8yi 
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When evaluating the second addend in (15), attention must be paid to the 
behaviour of the history parameter K. This is explained in Gutierrez and 
de Borst (1998) for the case that y represents the material parameters and 
will be elaborated in the next section to evaluate the derivatives of the 
equilibrium path with respect to boundary constraints. 

3 Imposing boundary constraints through Lagrange multipliers 

3.1 Equilibrium path 
In equation (9) it has tacitly been assumed that some components of f d 
are unknown a priori, to account for the reaction forces induced by the 
constraints 

Ha-c=O. (17) 

Traditionally, these constraints are imposed through transformations of 
the stiffness matrix Kand the residual rat each iteration of the Newton
Raphson solution procedure (Crisfield 1991). Such transformations can be 
troublesome for general forms of H, e.g., when one degree-of-freedom is 
affected by more than one constraint. Another possibility is the Lagrange 
multiplier method (Zienkiewicz and Taylor 1991, Rodriguez-Ferran and 
Huerta 1998), according to which the reaction forces fr are added to the 
residual r a and expressed as 

fr= (18) 

whereµ is a vector of as many Lagrange multipliers as constraints in (17). 
Defining the residual r µ as 

rµ =Ha- c, 

the system of equations to be solved is 

Ta+HTµ 

=0. 

rµ 

(19) 

(20) 

The Jacobian transformation needed to solve (20) is extended with the 
matrix H, rendering the expression 

t+L'lh (i+ 1) t+L'lh (i) 

= (21) 
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for the Newton-Raphson procedure. 
Each Lagrange multiplier µi in µ can be interpreted as the generalized 

force corresponding to the constraint contained in the i-th component 
of Ha - c. The independent term c can in general be considered to 
be a function ofµ to account for non-rigid connections. For instance, 
expressions of c as 

(no sum on i) (22) 

would define an elastic connection of the degrees-of-freedom contained in 
the i-th component of Ha, where ki is the corresponding stiffness. The 
Jacobian transformation in (21) then attains the form 

[
K HT ] 
H diag(-ki 1) . 

(23) 

3.2 Gradient of the equilibrium path with respect to the constraints 
In the following development it will be assumed that the independent 
term c in (17) is composed of constants (thus, not dependent on µ)and 
represented by the vector Y of basic random variables. Proceeding in the 
same fashion as in (14)-(16) we obtain 

a t+Ate 

8yi 

a~>.. 

oyi 

at+~tµ 

8yi 

[ K HT]- I a ( r ) I 
= - H 0 °Yi r µ (a,e,11>..,µ) . 

Developing terms in the right-hand side of (24) leads to 

8ral = r BT (at+~fw) I vt+McdO.· 
OYi (a,e,A>.,µ) Jn 8yi (a,e,A>..,µ) ' 

8rel = O· 
0Yi (a,e,11>.,µ) ' 
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(25b) 

8rµI = 
0Yi (a,e,11A.,µ) 

The derivative of the damage parameter formalized as 

a t+.6.tJ I ow a t+Mfl, I 
0Yi (a,e,11>..,µ) = OK, 8yi (a,e,!lA.,µ) . 

(26) 

When damage is growing (~K > 0) then t+t..tK, = t+t..tEeq· Since Eeq = Ne, 
we have 

a t+.6.tK, I = 

8yi (a,e,11>.,µ) 

a t+.6.te I 
8yi (a,e,!i>.,µ) = O. 

(27) 

When damage does not grow, then t+D.tK, = tK. The derivative of K attains 
consequently the value left after at the previous time step, i.e., 

a t+.6.tf\, I = o tK, 

fJyi (a,e,11>..,µ) OYi 
(28) 

The derivative of the damage parameter is thus expressed as 

8 t+.6.tJI { o a = aw a tfl, 
Yi (a,e,11>..,µ) OK Dyi 

if > O; 

otherwise. 
(29) 

4 on a double-edge-notched specimen 

The damage evolution in a double-edge-notched plain concrete specimen 
subjected to an axial, tensile load is presented as an example of the in-
fluence uncertainty the boundary constraints. The static scheme is 
depicted Figure 1. element simulations of this test, in which 
the loading plates are fixed, exhibit a symmetric evolution of dam-
age from both notches no extra imperfection is imposed. Numerical 
inaccuracies, however, to break this symmetry during the post-peak 
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Fig. 1. Schematic representation of a tensile test on a double-edge
notched specimen. Dimensions in millimeters 

branch. This is consistent with the unstable behaviour argumented by 
Bafant and Cedolin (1991). On the other hand, experiments show that the 
deformation pattern is usually asymmetric after the peak load is reached, 
and evolves to a symmetric pattern during further deformation (Hordijk 
1991). The statistics of the relative difference between the extensomet
ric gauges (Figure 1), can be obtained with the finite element reliability 
method at different stages of the equilibrium path. The damage evolution 
law is given by 

w(K, Ko) = 1 - Ko ( (1 - a)+ a exp ( b(K - ~o))), (30) 
K 

where the parameters a and b represent the relative reduction of the peak 
stress as K -+ oo and the rate at which damage grows respectively. Fol
lowing Peerlings et al. (1998) these parameters are taken a = 0.96 and 
b = 350. The equivalent strain Eeq is defined as in de Vree et al. (1995), 

w -1 1 
Eeq = 2w(l - 2v/1 + 2w 

(w - 1)2 J2 2w J 
(1 - 2v )2 1 + (1 + v )2 2' 

where the strain tensor invariants are given by 

Ii =EI+ c2 + c3; 

Ji= (c1 - c2)2 + (c2 - c3)2 + (c3 c1)2, 
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and the parameter w controls the sensitivity to compression relative to that 
in tension. In this study w = 10, which means that the compressive strength 
is ten times larger that the tensile strength. The damage threshold K:Q of 
the central zone of the specimen, where the notches trigger localization, is 
considered to be a normally distributed random field (Figure 5), with mean 
E[Ko] = 2.1 x 10-4 and coefficient of variation Cv = 0.1. A Gaussian 
correlation function is used, 

(33) 

where le is the correlation length, which scales the decay of the correlation 
function as the distance between x 1 and x2 increases. In this study le = 
10 mm. The other material parameters have been taken E = 18 000 MPa, 
v = 0.2 and ls = v'2 mm. A design load of 7 000 N has been considered. 

The random field of the damage threshold is discretized with the 
midpoint method (Li and Der Kiureghian 1993) and the specimen, that 
has a thickness of 50 mm, is discretized into eight-noded plane-stress finite 
elements with a 2 x 2 Gauss-Legendre integration quadrature. While the 
nodes along the bottom edge are kept fixed, linear constraint equations are 
used along the top edge to simulate a fixed plate. The difference between 
the vertical displacement of the left and right uppermost comers is tied as 
well and considered as a centered, normally distributed random variable. 
Different values will be considered for the standard deviation u P of this 
variable in order to simulate defects in the horizontality of the loading plate. 
Although a realistic analysis should also consider the bending stiffness of 
this plate, we shall assume that it is rigid so as to study the consequences of 
an orientation defect exclusively. The servo-control by the extensometric 
gauges is simulated with a selective arc-length procedure. 

Defining bz and fir as the extension of the left gauge and the right gauge 
respectively, the state function Z is defined as 

(34) 

in order to study the relative difference of extension between both gauges. 
Different points of the cumulative distribution function of Z can be ob
tained by running the reliability algorithm for different values of z0. Due 
to the symmetry of the problem, it is meaningful to study the probabil
ity that the absolute value of the difference (34) exceeds a threshold. A 
first-order approximation of this probability is readily expressed as 

P(IZI > zo) = P(Z < -zo) + P(Z > zo) ~ 2<1>(-/3). (35) 
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Table l. Results for o-p = 0 mm 

(<5z +fir )/2 0.008 mm 0.014mm 
zo 0.3 0.15 0.3 0.15 
(3 0.88 0.42 1.46 0.72 

P(IZI > zo) 0.378 0.674 0.144 0.474 

Table 2. Results for O"p = 0.0005 mm 

(<5z + 8r )/2 0.008 mm 0.014mm 
zo 0.3 0.15 0.3 0.15 
(3 0.86 0.41 1.42 0.70 

P(IZI > zo) 0.390 0.682 0.156 0.484 

Table 3. Results for o-p = 0.005 mm 

(<5z +Or )/2 0.008mm 0.014mm 
zo 0.3 0.15 0.3 0.15 
(3 0.35 0.17 0.47 0.23 

P(IZI > zo) 0.726 0.865 0.638 0.818 

The statistics of the relative difference of gauge extensions has been 
studied at two different stages of the post-peak equilibrium path, namely 
for (8l + 8r)/2 = 0.008mm and (8z + 8r)/2 = 0.014mm, which approx
imately correspond to 100% and 75% of the peak load respectively. In 
the first simulation it has been assumed that the loading plate is perfectly 
horizontal, i.e., ap = 0 mm. Uncertainty is thus only found in the damage 
threshold field. The results, which are shown in Table 1, show that the 
probability of keeping a given degree of asymmetry (quantified by zo) de
creases as the average deformation progresses. A second simulation has 
been carried out for o-p = 0.0005 mm. Table 2 shows that the results do not 
essentially differ from those obtained for o-p = 0 mm. The probabilities 
of exceeding zo are slightly larger in this case. When ap = 0.005 mm, 
instead, a dramatical grow of these probabilities is observed (Table 3). 
This results show that small defects in the orientation of the loading plate 
can be of capital importance for the asymmetry in the evolution of the 
damage pattern during failure. 

5 Conclusions 

It is meaningful to consider uncertain boundary constraints in probabilistic 
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analysis of fracture processes of concrete, since the statistics of the damage 
evolution can depend significantly on the boundary defects. Evaluation of 
this dependence is possible with the finite element reliability method. For 
this purpose, stochastic boundary conditions can efficiently be imposed 
through Lagrange multipliers. 
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