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Abstract 
This work proposes a stress analysis 
using a real digital image to generate a k...,,.;._ ...... _...,._ ..... '"' .... .JL ... 

element model of coarse aggregates and mortar. 
image digitizing and processing 
dimensional linear analysis using 
element of cubic shape. We also propose a mixed 
models cracks along the interfaces between coarse aggregates and mortar. 
These interfaces are defined by the digital sub-image .......... A.V..., .......... ...,\..&. 

mixed element. 
Key words: Digital image, composite material, mixed finite element 

1 Introduction 

Concrete material is a quasi-brittle due to .............. "' ... "'"""' 
mechanical behavior of a macroscopic concrete structure 
loading has been explained by fracture mechanics 
assumption of a homogeneous However, for 
loading, it is essential to consider tensile failures resulting 
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heterogeneity of the material. To accurately model such local failures in a 
numerical analysis, the material must be dealt with as a composite 
material. In this study, we assume that concrete material has a two-phase 
structure consisting of coarse aggregates and mortar. Because of the 
existence of more microscopic constituents such as fine aggregates and 
cement paste, it is appropriate to call the two-phase structure a 
mesoscopic model. 

In the numerical analysis of the mesoscopic structure, the geometric 
model defines the shapes of coarse aggregates and their positions without 
any overlapping, and the corresponding finite element mesh is generated. 
This procedure, especially in the three-dimensional (3-D) case, results in 
the following problems. 

1. There are too many geometric modeling parameters to be defined. 
Even if random numbers are used, the modeling accuracy is another 
problem. 

2. Coarse aggregates in the mesoscopic structure usually occupy 35-45% 
of the volume. Therefore, it is difficult for almost all the algorithms to 
generate a good finite element mesh with the boundaries of tiled 
elements fitted to the interfaces between aggregates and mortar (we 
refer to this as fitted mesh). 

These problems can be overcome by directly using a digital image of 
the real concrete material. A digital image consists of small elements 
called pixels (picture cells) in the 2-D case or voxels (volume cells) in the 
3-D case. If one pixel (voxel) is reg~ded as one finite element, the 
domain can be decomposed into exactly the same elements in shape. That 
is, all the mesh generation procedures can be replaced by digital image 
processing. We refer to such a digital image-based mesh as a digital mesh. 

This original concept was proposed by S. J. Hollister and N. Kikuchi 
(1994) in the field of biomechanics. They applied it to the 3-D stress 
analysis of bone tissue, whose structure is too complicated to generate a 
fitted mesh. It was reported that its digital image was reconstructed by 
image scanning such as X-ray computed tomography. 

This work proposes a stress analysis procedure for concrete material 
using a digital mesh. Section 2 briefly presents a digital image processing 
procedure and a 3-D linear analysis using an eight-node trilinear element 
of cubic shape. See also G. Nagai et al. (1998), where this is reported in 
detail. Section 3 proposes a new mixed finite element using an embedded 
digital sub-image that can model the cracks along the interface between 
coarse aggregates and mortar. 
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Sequential digitizing with a flatbed scanner Sharpening operation among 
(0.5rnrn scraping per one repetition, 0.0125rnm · RGB channels 
sampling in section, and 24bit color quantizaing) 

Thresholding and deleting 
fine aggregates 

Distance transform by using 
coarse aggregate images 

Interpolating between sections with distance Binding all images 
images, changing resolution, and thresholding (4003 voxels) 

Fig. 1. Image digitizing and processing procedure 

2 Application of digital mesh to concrete material 

2.1 Image digitizing and processing as finite element modeling 
A 3-D image can be obtained by binding a sequential set of 2-D sectional 
images. Physical destruction is the easiest way to obtain the sections of 
concrete material, and repetition of scraping can produce a sequential· set. 
Accordingly, our digitizing procedure comprises repetition of the 
following: scrape a concrete specimen with a diamond scraper and 
acquire its sectional image by digitizing with a color flatbed scanner for 
PC. The cement paste in this specimen was colored with red Fep

3 

pigment for easy image pro~essing, since concrete material is usually 
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Table 1. Material properties for mesoscopic structure 

Material Young's modulus 
(MPa) 

Coarse aggregate 5.3 x 104 

Mortar 2.4 x 104 

Mesoscopic structure 

Poisson's ratio 

0.15 
0.19 

tension 
(MPa) 

>20 

15 

10 

5 

Fig. 2. Finite element model Fig. 3. Maximum principal stress 
in the center of y 2-y 3 section 

grayish. 
The digital image processing procedure is illustrated in Fig. 1. Based 

on the assumption of a two-phase (coarse aggregate and mortar) material, 
fine aggregates in the mortar are deleted from the images. Fine aggregate 
is so much smaller than coarse aggregate that the digital images can be 
processed independently in each 2-D section. After some operations, a 3-
D grayscale image is obtained. Finally, a 3-D binary image in which the 
part comprising the coarse aggregates is marked 1 and the rest is marked 
0 is obtained by thresholding of the grayscale image. This is equivalent to 
the digital mesh. If another mesh is required, it can be obtained by 
changing the resolution of the grayscale image. 

2.2 Linear analysis of mesoscopic structure 
This section presents an example calcul~ted by the homogenization 
method. The homogenization method is derived from a mathematical 
theory based on the two-scale asymptotic expansion with respect to the 
displacement function. It is a remarkable theory in the field of composite 
materials (for example, see G. M. Guedes and N. Kikuchi (1990)). 

Coarse aggregates in the mesoscopic structure, consisting of 2563 

elements (about 50 millions degrees of freedom) cut arbitrarily from the 
3-D binary image, is shown in Fig. 2. Material properties for the 
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lnterfacial pixel Low-resolution image 

Fig. 4. Tree-structured hierarchical digital image 

mesoscopic structure are given in table 1. The homogenization method is 
used to calculate the homogenized macroscopic elastic modulus and the 
stress in the mesoscopic structure. In this case, the macroscopic modulus 
is 

3.826 0.793 0.793 -0.003 0.001 0.002 

0.793 3.823 0.792 -0.002 -0.003 0.000 

0.793 0.792 3.824 0.001 -0.004 0.001 
(x 104 MPa). 

-0.003 -0.002 0.001 1.513 0.001 -0.002 
(1) 

0.001 -0.003 -0.004 0.001 1.511 0.000 

0.002 0.000 0.001 -0.002 0.000 1.512 

When a uni-axial 100 MPa compressive load is applied to the 
macroscopic structure, the maximum principal stress in the mesoscopic 
structure is as shown in Fig. 3. 

3. Embedding of digital sub-image in digital mesh 

The digital mesh has a lot of practical advantages for finite element 
modeling. However, it has several disadvantages in a precise simulation 
of non-linear behavior. For example, because of the nature of the digital 
image, the digital mesh causes a jagged approximation on the interface 
between coarse aggregate and mortar. Therefore, it needs to be fine, thus 
requiring many degrees of freedom. Furthermore, it can not model cracks 
along the interfaces. 

In this section, as illustrated in Fig. 4, a concept of tree-structured 
hierarchical digital images is employed for the low-resolution interfacial 
pixels. High-resolution images are converted to low-resolution images 
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except for the interfacial pixels. The digital sub-images, which consist of 
the high-resolution pixels, are embedded in the interfacial pixels. 

Now let us consider the interfacial pixels as mixed finite elements 
which can capture the strain discontinuity mode derived from the 
existence of different materials and the displacement discontinuity mode 
derived from the cracks along the interfaces. The other pixels are still 
regarded as the standard finite elements. The following illustrates the 2-D 
case, but the 3-D case is easily derived from it. 

3.1 Approximation of interfacial finite element 
The mixed finite element developed for the digital mesh is based on the 
approaches by J. Oliver (1996) and R. Larsson et al. (1995). The major 
differences between theirs and ours are the use of rectangular elements, 
the existence of different materials, and the fact that the crack direction 
has already been determined. This mixed element is an application of the 
assumed enhanced strain (AES) method formulated by J.C. Simo and M. 
S. Rifai (1990). The AES method has the feature of strain enrichment, i.e. 

Ee= Ece ' + Ee 
............ ........ (2) 

compatible enhanced 

where, the subscript e denotes the element number. The compatible strain 
f. ce is interpolated by using a standard bilinear shape function, i.e. 

(3) 

where, ue is the nodal displacement. 
The geometric parameters can be estimated from the sub-image shown 

in Fig. 5. However, the digital representation is not suitable for our 
formulation. Therefore, as shown in Fig. 6, an idealized approximation of 
the interface is considered. Here, the element Qbe is split into three parts, 

namely n;e, n;e, and Sbe. I· I denotes the area of the region. Sbe is the 

thin band whose center is the idealized straight interface Se . Its width and 

length are ke and lse, respectively. The unit normal vector of the 

idealized interface Se is ne = (nxe'nYJ. 
We set the enhanced strain as 
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ke =!Shel/ lse 

ne = average(n(i, j)) 

Fig. 5. Definition of geometric 
parameters in element 

[n,. n~,] N = 0 e 

nye nxe 

A 

~ 

A 

Fig. 6. Finite element 
approximation 

Hs, = {~ XE Q~e US~ o -{o XE Q;e uQ;e 
+ + ' Se - 1/ ke XE She XE Qbe USbe 

(6) 

(7) 

where, uRe and uHe are the displacement gradient jump derived from the 
existence of different materials and the displacement jump derived from 
the crack, respectively. H se is the multi-dimensional version of 

Heaviside function, and /Jse is the approximated multi-dimensional 

version of Derac' s delta function in the sense of /J sek e = 1. 
In the AES, the following equations must be satisfied so that the 

element passes the patch test. 

f G Re dQ = 0 , f G He dQ = 0 
Jo.b, Jn,,., (8) 

As a result of the formulation, the element stiffness equation can be 
expressed as 
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(9) 

This element stiffness can be assembled by the standard finite element 
procedure via the static condensation. 

3.2 Numerical integration 
The material modulus function Ce in each interfacial element can be 
defined as 

where, c;, c;, and Cse are constants defined in n;e, n;e, and She. o;, 
and o:e are the split functions of (;Se at the center Se' i.e. o; + o:e = Ose. 

Expanding Eq. (9) with respect to Hse, 8~, 8-:e, the element stiffness 

Kbe can be approximated as 

{

/ ( Q be ) + J ( Q ;e) + J ( S be) 

Kbe = /(QbJ + /(Q~e) + /(SbJ 

ln;el > ln;el 
ln;ej ~ ln;ej (11) 

where, I 0 denotes a numerical integration with respect to the region 0 . 
This integration is estimated by using the embedded digital sub-image 
shown in Fig. 5. 

3.3 Numerical experiment 
A simple model is used to check the performance of the present mixed 
finite element. The model shown in Fig. 7, which consists of 802 high­
resolution pixels, is decomposed into 102 finite elements. The Young's 
modulus for the interfaces is made much smaller than those for the others 
to model the tensile failures in a non-linear simulation. The mixed 
element is used for the elements containing the interface, and the standard 
four-node bilinear element is used for the other elements. This mesh is 
shown in Fig. 8.1. In this case, one digital sub-image consisting of 82 fine 
pixels is embedded in one mixed element. To compare the performance, 
the same mesh for which only the standard element is used, is shown in 
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Uniformly distributed load 

tttttJtttt 

. •~Mortar ·.~··.·.· .. · ..... ·.······· ·········· .. ·:·····.···.·········.· ... ·.·.· .. ·· ..... ·· ... ··•···.•··•·· Aggregate Interface 

Young's modulus 

E=iO 

E= 1 

E=0.001 

Each Poisson's ratio is 0.2 

Fig. 7. Simple 802 pixels model 

Mixed element 

Standard element 

Fig. 8.1. Mixed element mesh 

Fig. 9.1. Standard element mesh 

Fig. 8.2. Mesh deformation 

Fig. 9 .2. Mesh deformation 

Fig. 9 .1. This mesh can not represent the interface. 
When a uniformly distributed load is applied to the model, its mesh 

deformations are as shown in Fig. 8.2 and 9.2, respectively. This 
comparison shows that the mixed element can model the cracks along 
interfaces. 
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4. Concluding remarks 

We have proposed direct use of digital images for finite element modeling. 
This digital-image-based mesh simply and precisely reflects the structural 
geometry of concrete material. However, it has the disadvantages that 
many elements are required and the cracks along interfaces can not be 
modeled. Therefore, we have also proposed a new mixed finite element to 
overcome these disadvantages. 
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