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Abstract
In this paper a constitutive theory of elasto-plastic analysis using
additional loads in Finite Element Method (FEM) is introduced. When
a calculated stress set exceeds an assumed yield criterion, an iteration is
performed repeatedly with an additional load set until a calculated stress
set converges onto the yield criterion surface. = Here, this analytical
- theory is described mainly. In order to verify this theory, some
comparisons between analysis and experiment are added. For details,
refer to Ishida(1994). As the conclusion, good coincidences between
analysis and experiment are observed. Therefore, this analytical theory is
thought to be reasonable.
Keywords: elasto-plastic analysis, constitutive theory, yield criterion

1 Introduction

The main points of plasticity theory are to decide the criterion in which
a material yields and the relation between stress and strain after yield.
This paper introduces the latter, i.e. constitutive theory in the yield area.

The constitutive theory described here is the method of giving
additional loads for stress to converge onto yield criterion surface. In the
theory, the relationship between stress set and yield criterion is visually
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understandable compared with other conventional theories.

First, an elasto-plastic one-dimensional problem as shown in Fig. 1
will be discussed. Element A and element B are placed parallel and
stiffnesses of element A and B are Ka= 15 kN/cm and Kv= 10 kN/cm
respectively. Element B yields at the load of Py = 20 kN and the
applied load is P= 100 kN. Na and Nb are axial forces in element A
and B respectively, and 6 is displacement. This problem can be
solved by iteration method as follows. o

step 0 : Nao =P - Ka /(KatKb) = 60
Nbo=P- Kb/ (KatKb) =40 > Py =20
6 0=P (KatKb) =4.0

step1: AP1*1 =Nbo -~ Py =20
Na1 = (P+4 P1*)Ka /(KatKv) = 72
Nov 1 = (P+4 P1*3)Kb /(KatKb) = A P1*2 = 28 > Py
6 1 = (P+AP1*),/(KatKb) = 4.8
stepn: APn=Nbnl~- Py
Nan = (P+2Z AP i)Ka ~(KatKb)
Non=(P+Z AP i)Kb (KatKb) = ZAP i
On =(P+ZAP i)/ (KatKb)

(D

This operation is modified Newton-Raphson method. The results are
shown in Table 1. This method will be applied for 3-dimensional

problems.
Table 1. Results of iteration

slep Na(kN) Nb(kN) I8 Pi(kN) & (em)
0| 0. 40. 0. 4.
=] I 1] 72 28. 20. 438
P=100 kN — A4B ; 2] 7638 23.2 28. 5.12
Vo i 3] 7872 21.28 31.2 5.248
74 ; 4| 79488 | 20.512 | 3248 5.2992
[ < ; 5 1 797952 | 20.2048 | 32.992 5.31968
5 B B | 6 | 799181 | 20.0819 | 33.1968 | 5.32787
A 7] 79.9672 | 20.0328 | 33.2787 | 5.33115
- 8 | 79.9869 | 20.0131 | 333115 | 5.33246
0 2 4 6 9 | 799948 | 20.0052 | 333246 | 5.33298
§(cny 333 [10[ 799979 [ 20.0021 | 333298 | 533319
1] 79.9992 | 20.0008 | 333319 | 5.33328
) ) ) 12 | 79.9997 | 20.0003 | 33.3328 | 5.13331
Fig. 1. One-dimensional 13 | 79.9999 | 20.000i | 333331 | 5.33332
problem 14 ] s0. 20. 333333 | 5.33333
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Fig. 2.  Yield criterion of steel ~ Fig. 3.  Yield criterion of concrete

Vs

At a certain step in incremental load method, calculated principal
stress set(o 1,0 2,0 3) is assumed to exceed yield criterion as shown
in Fig.2. The exceeding amount of principal stress set is expressed as
(Ao 1,00 2,00 3), which is the difference between (o0 1,0 2,0 3)
and (o 1*,0 2%,0 3*%). (o0 1* 0 2% 0 3*%) is the point where
perpendicular line from (o 1,0 2,0 3) intersects the yield criterion
surface. Equivalent stress set and equivalent nodal point force set
(additional load set) which equilibrate with the excess principal stress
set (Ao 1,00 2,00 3) are calculated, then the calculation will be
resumed with the external loads in which the additional load sets are
added on. The new principal stress set will be obtained from the new
stress set, which is a result of subtracting the equivalent stress set from
the calculated stress set. The iteration is to be repeated until the
principal stress set converge onto the yield criterion surface. The excess
principal stress set, the equivalent stress set and the equivalent nodal
point force set correspond to AP1*' A Pi*2 and AP1** in Eq.(1),
respectively. The sign convention is that tension is positive and
compression is negative in this paper.

2 Analytical theory

2.1 Assumption of yield criterion
Fllowing von Mises' criterion, yield criterion for steel is assumed as
shown in Fig. 2 and Eq. (2).

2sfo2=(01-02)?2+(0c2-03)+(c3-0 1) @)
where sfo : yield stress of steel

Yield criterion for concrete is assumed as a composite of two cones
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as shown in Fig. 3, and Eqgs.(3),(4). One cone (Surface D) has
confinement coefficient k and intersection with principal axis at cfe, and
the other (Surface @) has intersections with principal axis at cfc and cft.
The coefficient k indicates the influence of side stress against tri-axial
compression strength of concrete. Surface @, @ and ® are surfaces
dividing principal stress field.  Surface @ is a cone which is
perpendicular to Surface @ at the intersection line of Surface @ and
®@. Surface @ is a cone which is perpendicular to Surface @ at the
intersection line of Surface @ and @. Surface ® is a cone which is
perpendicular to Surface @ at the peak. This yield criterion is in a
similar form as Drucker-Prager's criterion.

Surface @ {o1+02+03+3cfe (k- 1)}

=(k+2yrC2:/{2(k-1)} _ (3)
Surface @ {o14+02+03~ 2 cftcfc /(cft+ cfe)} 2

=(coft— cfe ) C2/ {2(cfi+cfe)} 4
Surface @ {o1+02+03- 3kcfe (k+2)}:

=2(k-1rC>/(k+2) (5)
Surface @  {o 1+02+0 3+ (cficfeo+ 3cfe?)/(cfi— ofc)} 2

=2(cft+ cfc ) C2 /(cft = cfc ) 6)
Surface ® {o1+02+03- 2 oft ofc /( oft+ cfc)} 2

=2( oft+ ofc ) C2 /( oft= ofc ) (7)
where C=+ (0 1-0 2 (0 2-0 3)+(0 3-0 1)? (8)

cfc : uni-axial compression strength of concrete (cfc < 0)
cft : uni-axial tensile strength of concrete (cft > 0)
k : confinement coefficient (k > 1)
cfc max=cfe+kpi (cfc max:tri-axial compression strength,pz:lateral pressure)

2.2 Excess principal stress set
For steel, when the principal stress set(o 1,0 2,0 3) exceeds the yield
criterion surface as in Fig.2, the point( ¢ 1* o 2% 0 3*) where the
perpendicular line from the point(o 1,0 2,0 3) intersects the yield
criterion surface is expressed as Eq.(9). (refer to appendix)

o1*=(g1+o2403)/3+4 2sf0(Q o 1-02-03)/(3C)
o02*=(o 1+02+03)/3++/ 2sf0(202-03-01)/3C) (9
g3*=(cg1tog2t03)/3+4 2sf0QQo3-01-0 2)/3C)

For concrete, when the principal stress set(o 1,0 2,0 3) exceeds the

yield criterion surface (Surface @ , @ as in Fig. 3), the point( o 1*,
o 2% 0 3%)is expressed as Egs.(10)~ (13) according to the field
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which the point( o 1,0 2,0 3) is located in.

Field 1 :
0 1*=B1{6cfe/ (k+2) >+ 2C/(k+2)~ (o 140 2+93)/ (k-1)}
+A1{3efe/ (k=1)2={ 2C/(k+2)+ (o 10 2+03)/ (k=1)} (2 0 10 2-0 3)/C
0 2*=B1{6cfe/ (k+2) =+ 2C/(k+2)- (o 1+0 240 3)/ (k-1)}
+A1{3cfe/ (k=1)2={ 2C/(k+2)+ (o 1+0 2+03)/(k=1)} (2 0 270 3= 1) /C
0 3*=B1{6cfe/ (k+2) >+ 2C/(k+2)- (s 1+0 2+03)/ (k-1)}
+A1{3cfe/ (k=1)2={ 2C/(k+2)+ (o 1+0 240 3)/ (k=1)} (2 0 3-0 1= 2) /C |
(10)
where  At=—{ 2 (k+2) (k-1)/{9(k=+2)}, Bi=- (k+2)2(k-1) /{9(k+2)}

~

Y

Field I :
0 1*=B2{4cftchcz/ (cft‘cfc) 2+‘f cficfcC/ (cft“cfc) +cftefc (0 1+0 2+0 3)/ (cft—H;fc) } b
+A2 {Zcftzc /! (cchfc) 2’ﬁcftcch/ (cft—cfc) ~cficfc (0 140 240 3)/ (cft%fc)}
- Q201-02-03)/C
0 2*=B2{4cftchc_z/ (cft"cfc) 2+1[ 2cficfcC/ (cfimcfe) +oftcfc (o 1+0 2+0 3) / (cfircfo) }
+A2{2cfecfe/ (cft+cfc) Z—ECﬁCfCC/ (cft—cfe) —cficfe (o 1+0 240 3)/ (cfirefe) }
-Q202-03-01)/C
0 3*=B2{4cftchcz/(cft"cfc) 2+J 2cficfeC/ (cft-cfc) +cficfc (o 1+0 240 3)/ (cft+cfc)}
+A2 {2cft2cfcz/ (cft*cfc) 2‘»/—_20ftcch/ (cft—cfc) —cficfc (o 140 240 3)/ (cft+efe) }
- (203-01-02)/C

B 11y
where A2= _w[ 2 (cficfe) (cfitcfe) 2/ {3cft cfe(3cft 2+2cft cfct3cfe 2)},
B2= (cfi—cfc)2 (cfitefc)/ {3cft cfc(?)cft 14D cft cfet3cfc Z)}
Field 1T :
o 1*¥=cfc/3- cho (2 ol1-02~0 3)/(3C)
02*=cfe/3-{2c(202-03-01)/(3C) (12)
03*=cfe/3-{2cf(203-01-02)/(3C)
Field IV
01*= g 2% =g 3* = 2ficfe / { 3( oft + cfe )} (13)

The principal stress set which is exceeding the yield criterion
surface, (Ao 1, Ao 2, Ao 3) is the difference between those two sets of
stress for each case, as expressed as Eq.(14). '

Ao1=01-0 1%
bo2=02-02* ‘ (14)

Mo 3= 030 3*
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2.3 Equivalent stress set and equivalent nodal point force set
The principal stress set is expressed by the stress set as follows.

[0 p]=[TI [oc][T] (15)
where[ o p]:principal stress matrix, [T ]:coordinate transformation matrix
[ o] :stress matrix, [ J7:transposed matrix

The equivalent stress set is expressed by the obtained excess principal
stress set as follows.

lbol=[T][bo p][T]" (16)
where [Ao ] :equivalent stress matrix :
[Ao p] :excess principal stress matrix

Axial symmetry rectangular ring element is employed for FEM as
shown in Fig4, and the stress set equivalent to the excess principal
stress set(Ao 1,4 0 2,0 0 3) is expressed as follows, developing Eq.(16).

~

Ao 1+ 0o 3 Ao 1- bo 3
bor= + cos 2 w
2 2
) Ao 1+ A0c 3 Ao 1- bo 3 5
0z= - W
z > > coS ? 17
hose =ho2
A - bdo3
Atrz=u-~ sin 2 o '
2 J

where w: an angle between ¢ 1 and r-axis

The nodal point force set is expressed by the stress set as follows.

{p} = J vIBF{a}av (18)
where { P} :nodal point force vector, {0} :stress vector
[B] strain shape matrix

Developing Eq.(18), the equivalent nodal point force set is obtained as
Eq.(19) for the axial symmetry rectangular ring element shown in Fig4.

Ap1 -al az 0 -b1 Ao r
A p2 0 0 -bi —al
A p3 al a2 0 ~b2 Ao e
A p4 0 0 -t al
A - =
Lap} A ps | al a2 0 b2 Ao z (19)
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A ps 0 0
A p7 -al a
A ps 0 0

bi

al
bl At rz
—al

where { AP} :equivalent nodal point force vector

al=(n/2)(rixt+ri)h
a=(x/2)(rix1-1i)h

=(nw/N(rinn+2ri)(rit1—ri)
b2=(m/3)( 2ri+14ri)(rit1 = 1i)

2.4 Application to non-linear materials
The materials which this analytical method can be applied for must be
elastic until stress set reaches the yield criterion surface. Non-linear
materials such as concrete are considered as overlay models made of
some different characteristics whose stress-strain relationships are
bi-linear. Yield criterion, as shown in Fig. 3, is then set for each
decomposed characteristic. The stress set and the nodal point force set
are obtained, and then those are composed.

prSgr
- T (e

(e8) Trz
\ (yrz)

lApzl Ap,, Aps
T itl 1

I

Fig. 4. Ring element for FEM
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Jealculale displacement A U

{by incremental load A P

r-;(ﬂcmcms, overlay modcls}
v

calculatc Ao by AU
calculate o1 as follows

ot=0 +A0 - Aoy
calculate principal stress o p by o1

O p exceeds or does not converge no
on the yicld criterion surface

ycs

calculalc cxcess pm)\ctpnl sircss A Oy
by O p* on the yicld surface

Aor=0,—0p*
calculate equivalent stress § 0 eq and
cquivalent nodal point force 4P by Aoy
replace as follows

A U eq — Ao eqt do g

AP < ApP+ip

[conlinue

next

step

next
iterative

slep no__ all clemcnls)
< converged

incremental yes

replace as Jollows
U <~ U+AU
g~ 0+A0—A0«
AP <« B8AP
Oea v BAO

where  f3: coeflicient of increment

Fig. 5 Flow chart of iteration

in incremental method



2.5 Flow chart of iteration in incremental load method
A flow chart of iteration in incremental method is shown in Fig. 5, and
as show in there the load increment is changeable by coefficient of

increment S .

3 The analysis examples

3.1 Axial compressionk test of concrete cylinder specimen
The specifications of concrete used for this analysis are as follows.
size of specimen: 100 mm ¢ X 200 mm, E= 36.2 GPa, fc =— 38.8

MPa, cfi= 3.88 MPa,

v=20.17, k=3
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In this analysis, the stress-strain relationship of concrete is decomposed
to 3 bi-linear models based on the test result. In Fig.6, the stress-strain
relationships obtained from analysis are shown along with experimental
results. Distributions of axial stress, 0 z , from analysis are shown in
Fig.7. In large load step, the distribution shape comes to resemble a
parabola.

3.2 Axial compression test of concrete filled steel circular tube .
The specifications of steel are as follows. Concrete filled in tube is as
shown in the preceding clause.

steel tube: P-318.5 X 6, E=201 GPa, sfo=358MPa, v=023
The load-strain relationships obtained from this analysis are shown in
Fig.8 along with experimental results. In this figure, the load shares of
concrete and steel tube from analysis are expressed too. In large strain
ranges, the increase of load share of concrete is caused by confinement
of steel tube. The path of principal stress set( o 2,0 3)of steel tube
from analysis is shown in Fig.9.

4 Conclusion

As introduced above, a relatively good coincidence between this analysis
and experiment is observed. Therefore, the author is convinced that this
analytical theory is reasonable, and expects that this theory will develop
~1n the future.
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Appendix The induction of the intersection point of perpendicular
line and yield criterion surface

In Fig. 10, the rotation matrix [ R ] that rotates the space diagonal axis
(01=02=03) atound 0 2=—03(0 1= O)ax1s so as to align it
with ¢ 1 axis is shown as follows.

1/43 1/43 1/43
[R1=|-G+/3) /6 G-/ 3/6 1//3]| (0
B=4/3)/6 —@+4/3)/6 1/43
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Eq.(23)

g2=-03(c1=0)

Fig. 10  Transformation of coordinate

Using [R], the point (o 1,0 2,0 3) moves to the point (o 1, 02,
o 3) as shown by the following Eq.(21). Also, the converse is shown
by Eq.(22).

{o}= [R]{0} n
{o}= [RI {0} (22)
By reference, [ R]'= [R]-'. Substituting Eq.(22) for o in Eq.

(2), we obtain Eq.(23) as follows.
2502 ,/3= 02+ 032 ' (23)

Eq.(23) shows the cylinder where the center axis is o 1 axis. The
point (o 1%, o 2%, 0 3*) where the perpendicular line from the point
(o 1,0 2,03) intersects this cylinder is expressed as Eq.(24), by
elementary geometry.

ogl1*= o1

o2*=4 2/ 3sf0 02,/ 4 o2+ 032 (24)
og3*=4 230 03,/ o2 032

Substituting Eq.(21) for ¢ in Eq.(24), we can obtain Eq.(25) as
follows.

og1*=(c1+02+03)/ 3
o 2*={ 2sfo {—G3+{3) o 1+ —{3)0 242{3 0 3}/(6C) > (25)
g3*={2sfo {3 —{3)o1—@+ 3o 2#2{3 6 3}/(6C)

Substituting Eq.(25) for ¢ in Eq.(22), we can obtain Eq.(9),
described previously. And Egs. (10) ~(13) can be led to by the similar
procedure.
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