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Abstract 
In this paper a constitutive theory of elasto-plastic 
additional loads in Finite Element Method (FEM) is . ..-.-.-v-n.nnr-c•ro 

a calculated stress set exceeds an assumed yield criterion, an 
perfonned repeatedly with an additional load set until a ...,..._A,_,.._. •. <4._.._,U\. 

set converges onto the yield criterion surface. Here, 
theory is described mainly. In order to verify 
comparisons between analysis and experiment are 
refer to Ishida ( 1994) . As the conclusion, good 
analysis and experiment are observed. Therefore, this 
thought to be reasonable. 
Keywords: elasto-plastic analysis, constitutive theory, 

1 Introduction 

The main points of plasticity theory are to decide the ........ ,,r'°'..-'''"" ..... 

a material yields and the relation between stress and 
This paper introduces the latter, i.e. constitutive theory 

The constitutive theory described here is the 
additional loads for stress to converge onto yield criterion 
theory, the relationship between stress set and yield 
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understandable compared with other conventional theories. 
First, an elasto-plastic one-dimensional problem as shown in Fig. 1 

will be discussed. Element A and element B are placed parallel and 
stiffnesses of element A and B are Ka= 15 kN/cm and Kb= 10 kN/cm 
respectively. Element B yields at the load of Py = 20 kN and the 
applied load is P= 100 kN. Na and Nb are axial forces in element A 
and B respectively, and 8 is displacement. This problem can be 
solved by iteration method as follows. 

step 0 : Na O = P ·Ka /(Ka+Kb) = 60 
Nb o = P · Kb/(Ka+Kb) = 40 > Py 20 

8 o = P /(Ka+Kb) = 4.0 

step 1: l1P1* 1 =Nbo- Py=20 
Na l = (P+/1 P1 *3)Ka /(Ka+Kb) = 72 

Nb 1 = (P+/1 Pl *3)Kb /(Ka+ Kb) - /1 Pl *2 = 28 > 
8 I = (P+/1 P1 *3)/(Ka+Kb) = 4.8 

step n : /1 P n = Nb n-1 - Py 
Nan = (P+ 2: /1 P i)Ka /(Ka+Kb) 
Nb n = (P+ 2: /1 P i)Kb /(Ka+Kb) - 2: /1 P i 

8 n = (P+ 2: /1 P i)/(Ka+Kb) 

(1) 

This operation is modified Newton-Raphson method. The results are 
shown in Table 1. This method will be applied for 3-dimensional 
problems. 

P=lOO kN 
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Fig. 1. One-dimensional 
problem 

Table 1. Results of iteration 

st en Na(kN) Nb(kN) H Pi(kN) {5 (cm) 
0 60. 40. 0. 4. 
I 72. 28. 20. 4.8 
2 76.8 23.2 28. 5.12 
3 78.72 21.28 31.2 5.248 
4 79.488 20.512 32.48 5.2992 
5 79.7952 20.2048 32.992 5.31968 
6 79.9181 20.0819 33.1968 5.32787 
7 79.9672 20.0328 33.2787 5.33ll5 
8 79.9869 20.0131 33.3115 5.33246 
9 79.9948 20.0052 33.3246 5.33298 

IO 79.9979 20.0021 33.3298 5.33319 
II 79.9992 20.0008 33.33 I 9 5.33328 
12 79.9997 20.0003 33.3328 5.3333 l 
13 79.9999 20.0001 33.3331 5.33332 
14 80. 20. 33.3333 5.33333 

1118 



a 1 

Fig. 2. Yield criterion of steel Fig. 3. Yield criterion of concrete 

At a certain step in incremental load method, calculated principal 
stress set( a I, a 2, a 3) is assumed to exceed yield criterion as shown 
in Fig.2. The exceeding amount of principal stress set is expressed as 
( /1 a 1,/1 a 2,11 a 3), which is the difference between (a I, a 2, a 3 ) 
and ( a I*, a 2 *,a 3 *) . (a I*, a 2 *,a 3 *) is the point where 
perpendicular line from (a I, a 2, a 3) intersects the yield criterion 
surface. Equivalent stress set and equivalent nodal point force set 
(additional load set) which equilibrate with the excess principal stress 
set ( /1 a 1,/1 a 2,11 a 3) are calculated, then the calculation will be 
resumed with the external loads in which the additional load sets are 
added on. The new principal stress set will be obtained from the new 
stress set, which is a result of subtracting the equivalent stress set from 
the calculated stress set. The iteration is to be repeated until the 
principal stress set converge onto the yield criterion surface. The excess 
principal stress set, the equivalent stress set and the equivalent nodal 
point force set correspond to /1 PI *1,11 PI *2 and /1 P1 *3 in Eq. ( 1), 
respectively. The sign convention is that tension is positive and 
compression is negative in this paper. 

2 Analytical theory 

2.1 Assumption of yield criterion 
Fllowing von Mises' criterion, yield criterion for steel 1s assumed as 
shown in Fig. 2 and Eq. (2). 

2 sfo 2 = (a 1 - a 2) 2 + (a 2 - a 3) 2 + (a 3 - a i) 2 (2) 

where sfo : yield stress of steel 
Yield criterion for concrete is assumed as a composite of two cones 
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as shown in Fig. 3, and Eqs. (3), (4). One cone (Surface CD) has 
confinement coefficient k and intersection with principal axis at cfc, and 
the other (Surface @) has intersections with principal axis at cfc and cft. 
The coefficient k indicates the influence of side stress against tri-axial 
compression strength of concrete. Surface ®, @ and @ are surfaces 
dividing principal stress field. Surface ® is a cone which is 
perpendicular to Surface CD at the intersection line of Surface CD and 
®. Surface @ is a cone which is perpendicular to Surface ® at the 
intersection line of Surface CD and @. Surface ® is a cone which is 
perpendicular to Surface @ at the peak. This yield criterion is in a 
similar form as Drucker-Prager's criterion. 

Surface CD {a 1 +a 2 +a 3 + 3 cfc /( k - 1 )} 2 

= ( k + 2 )2 C 2 / { 2( k - I )2 } (3) 
Surface® {a 1 +a 2 +a 3 - 2 cft cfc /( cft + cfc )} 2 

=( cft - cf c )2 C 2 / { 2( cft + cfc )2 } ( 4) 
Surface@ { a I +a 2 +a 3 - 3 k cfc /( k + 2 )} 2 

= 2( k - 1 )2 c 2 / ( k + 2 )2 ( 5) 
Surface@ {a 1 +a 2 +a 3 + ( cft cfc + 3cfc 2 )/( cft - cfc )} 2 

=2( cft + cfc )2 C 2 
/( cft - cfc )2 (6) 

Surface® {a l +a 2 +a 3 - 2 cft cfc /( cft + cfc )} 2 

=2( cft + cfc )2 C 2 /( cft - cfc )2 (7) 

where C = J (a i- a 2) 2+( a 2- a 3) 2+( a 3- a i) 2 (8) 
cfc : uni-axial compression strength of concrete (cfc < 0) 
cft : uni-axial tensile strength of concrete (cft > 0) 
k : confinement coefficient (k > I) 

cfc max=cfc+kpt (cfc max:tri-axial compression strength,pt:lateral pressure) 

2.2 Excess principal stress set 
steel, when the principal stress set( a I, a 2, a 3) exceeds the yield 

criterion surface as in Fig.2, the point( a l *, a 2*, a 3*) where the 
perpendicular line from the point( a I, a 2, a 3) intersects the yield 
criterion surface is expressed as Eq. (9). (refer to appendix) 

a i*=(a 1+0 2+a 3)/3 + 8sfo(2 a i-a 2-a 3)/(3C)} 
a 2*= (a I+ a 2+ a 3) / 3 + J2 sfo (2 a 2 - a 3 - a i) / (3C) (9) 
a 3*=(0 I+a 2+a 3)/3 + 8sfo(2 a 3-a 1-a 2)/(3C) 

concrete, when the principal stress set( a I, a 2, a 3) exceeds the 
yield criterion surface (Surface CD . @ as in Fig. 3), the point( a l *, 
a 2*,a 3*)is expressed .as Eqs.(10),......_,(13) according to the field 
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which the point( a 1, a 2, a 3) is located in. 

Field I : 
a i*=Bd6cfcl(k+2) 2+f2c1(k+2)-(a i+a 2+a 3)/(k-l)} 

+AI{3cfcl(k-1) 2-f2c1(k+2)+(a I+a 2+a 3)/(k-1)}(2 a i-a 2-a 3)/C 
a 2*=Bd6cfc/(k+2) 2+f2c1(k+2)-(a I+a 2+a 3)/(k-I)} 

+Ad3cfc/(k-1) 2-[ 2C/(k+2)+(a I+a 2+a 3)/(k-1)} (2 a 2-a 3-a l)/C 
a 3*=Bd6cfc/(k+2) 2+{2C/(k+2)-(a I+a 2+a 3)/(k-l)} 

+Ad3cfc/(k-1) 2-f2C/(k+2)+(a 1+a 2+a 3)/(k-1)}(2 a 3-a i-a 2)/C 
(IO) 

where A1=-/2Ck+2) (k-1) 2/{9(k2+2)}, B1=- (k+2) 2 (k-1) /{9(k2+2)} 

Field II : 
a 1 *=B2 { 4cft2cfc2/( cft-cfc) 2+/ 2cftcfcC/ (cfrcfc) +cftcfc (a I+a 2+a 3) I (cft+cfc)} 1 

+A2 {2cft2cfc2/( cft+cfc) 2-/ 2cftcfcC/ (cfrcfc)-cftcfc (a l+a 2+a 3) I (cft+cfc)} 
· (2 a I -a 2 -a 3) IC 

a 2 *=B2 { 4cft2cfc2/( cft-cfc) 2+{2.cftcfcC/ (cft-cfc) +cftcfc (a 1 +a 2+a 3) / (cft+cfc) } 
+A2 {2cft2cfc2

/( cft+cfc) 2-f2cftcfcC/ (cft-cfc)-cftcfc (a I +a 2+0 3) / (cft+cfc) }J 
· (2 a 2 -a 3 -a 1)/C 

a 3*=B2{4cft2cfc2/(cft-cfc) 2+J2cftcfcC/(cft-cfc)+cftcfc(a I+a 2+a 3)/(cft+cfc)} 
+ A2 {2cft2cfc2/( cft+cfc) 2-f2cftcfcC/ (cft-cfc) -cftcfc (a I+a 2+a 3) I (cft+cfc)} 
· (2 a3-a i-a2)/C 

where A2 = -/l(cft-cfc) (cft+cfc) 2/ {3cft cfc(3cft 2+ 2cft cfc+ 3cfc 2 )} , 

B2= (cft-cfc) 2 (cft+cfc) / {3cft cfc(3cft 2+ 2cft cfc+ 3cfc 2 )} 

Field III : 
a I* = cfc I 3 - f2 cfc (2 a 1 - a 2 - a 3) I (3C)} 
a 2* = cfc I 3 - f2 cfc (2 a 2 - a 3 - a I) I (3C) 
a 3* = cfc I 3 - [2 cfc (2 a 3 - a 1 - a 2) I (3C) 

Field N : 
a l * = a 2 * a 3 * = 2cft cf c I { 3 ( cft + cf c ) } 

(11) 

(12) 

(13) 

The principal stress set which is exceeding the yield criterion 
surface, (~a 1, /1 a 2, ~a 3) is the difference between those two sets of 
stress for each case, as expressed as Eq.(14). 

(14) 
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2.3 Equivalent stre8s set and equivalent nodal point force set 
The principal stress set is expressed by the stress set as follows. 

[a p] = [T} [a] [T] (15) 
where [ a p}principal stress matrix,[ T]: coordinate transformation matrix 

[a ] :stress matrix, [ ]T :transposed matrix 

The equivalent stress set is expressed by the obtained extess prin.cipal 
stress set as follows. 

[il a ] = [T] [il a p] [T] T (16) 
where [ti a ] :equivalent stress matrix 

[il a p] :excess principal stress matrix 

Axial symmetry rectangular ring element is employed for FEM as 
shown in Fig.4, and the stress set equivalent to the excess principal 
stress set( ti a I,ti a 2,ti a 3) is expressed as follows, developing Eq.(16). 

tiai+tia3 ti a i- ti a 3 
ti a r = + cos 2 w 

2 2 
tia I+tia3 ti a i-tia3 

ti a z= 
2 2 

cos 2 w 
(17) 

ti a e =ti a 2 

ti a i- ti a 3 
ti r r z = 

2 
sin 2 w 

where w : an angle between a I and r-ax1s 

The nodal point force set is expressed by the stress set as follows. 

{ P} = f v [B]r {a} dV (18) 
where { P } :nodal point force vector, {a} :stress vector 

[B] : strain shape matrix 

Developing Eq.(18), the equivalent nodal point force set is obtained as 
Eq.(19) for the axial symmetry rectangular ring element shown in Fig.4. 

ti pl -a1 a2 0 -b1 ~a r 

Li p2 0 0 -b1 -a1 
ti p3 al a2 0 -b2 ti a e 

{ tip}= 
Li p4 0 0 -b2 al 

ti p5 al az 0 b2 ti a z 
(19) 
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where 

l £1 p6j 
£1 p7 
£1 p8 

0 
a2 

0 

b2 
0 
bl 

{ ~ P } :equivalent nodal point force vector 
al = ( n I 2) ( r i+l + r i ) h 
a2 = ( n I 2) ( r i+l - r i ) h 
bl = ( n I 3) ( r i+l + 2r i) ( r i+l - r i ) 

b2 = ( n I 3) ( 2 r i+ l +r i ) ( r i+ I - r i ) 

2.4 Application to non-linear materials 
The materials which this analytical method can be applied for must be 
elastic until stress set reaches the yield criterion surface. Non-linear 
materials such as concrete are considered as overlay models made of 
some different characteristics whose stress-strain relationships are 
bi-linear. Yield criterion, as shown in Fig. 3, is then set for each 
decomposed characteristic. The stress set and the nodal point force set 
are obtained, and then those are composed . 

..--..--1cnlculalc displacement U 

z 

Fig. 4. Ring element for FEM 
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by incremental load ti P 

a I' exceeds or does not. converge 
on the yield criterion surface 

--------en cu nte excess pr111c1pa stress a r 
by a r* on the yield surface 

ti a"= ar-or* 

110 

cnlculn!e cqui\'nlenl stress Ao cq and 
cquivnlenl nodal point force A P by ti a r 
replace ns follows 

tiaeq ,_ tiaeq+Ao"'I 
tiP llP+AP 

nexl 
iterative 
slcp 110 all elements 
~~------. converged-.> 

next 
incrcmenlal es 
step rep ace as o ows 

Fig. 5 

U - U+tiu 
a 4-. a+ tia-tia"" 
£\P <- (3£\P 
Oeq <- {3 l\aeq 

where (3: coefficient of i11crcme11t 

FI ow chart of iteration 
in incremental method 



2.5 Flow chart of iteration in incremental load method 
A flow chart of iteration in incremental method is shown in Fig. 5, and 
as show in there the load increment is changeable by coefficient of 
increment {3 . 

3 The analysis examples 

3.1 Axial compression test of concrete cylinder specimen 
The specifications of concrete used for this analysis are as follows. 
size of specimen: 100 mm </> X 200 mm, E= 36.2 GPa, cfc =- 38.8 
MPa, cft= 3.88 MPa, v = 0.17, k = 3 
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Fig. 6 Stress-strain relationship 
of concrete 

Fig. 7 Distribution of axial 
stresses of concrete 
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In this analysis, the stress-strain relationship of concrete is decomposed 
to 3 bi-linear models based on the test result. In Fig.6, the stress-strain 
relationships obtained from analysis are shown along with experimental 
results. Distributions of axial stress, a z , from analysis are shown in 
Fig.7. In large load step, the distribution shape comes to resemble a 
parabola. 

3.2 Axial compression test of concrete filled steel circular tube . 
The specifications of steel are as follows. Concrete filled in tube is as 
shown in the preceding clause. 
steel tube: P-318.5 X 6, E= 201 GPa, sfo = 358 MPa, v= 0.3 
The load-strain relationships obtained from this analysis are shown in 
Fig.8 along with experimental results. In this figure, the load shares of 
concrete and steel tube from analysis are expressed too. In large strain 
ranges, the increase of load share of concrete is caused by confinement 
of steel tube. The path of principal stress set ( a 2, a 3) of steel tube 
from analysis is shown in Fig.9. 

4 Conclusion 

As introduced above, a relatively good coincidence between this analysis 
and experiment is observed. Therefore, the author is convinced that this 
analytical theory is reasonable, and expects that this theory will develop 
in the future. 
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Appendix The induction of the intersection point of perpendicular 
line and yield criterion surface 

Fig. 10, the rotation matrix [ R] that rotates the space diagonal axis 
(a 1 =a 2 =a 3) around a 2 =- a 3 (a l = 0) axis so as to align it 
with a l axis is shown as follows. 

1//3-l 1//3 
[ R] = - (3 +/3) / 6 (3 f3) / 6 

(3 -J3)/ 6 -(3 +-J'3)/ 6 
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Fig. 10 Transfonnation of coordinate 

Using [ R] , the point (a I, a 2, a 3) moves to the point ( tJ I, o 2, 

u 3) as shown by the following Eq. (21). Also, the converse is shown 
by Eq. (22). 

{ o} = [ R] {a} (21) 
{a } = [ R]r { u} (22) 

By reference, [ R]r = [ R] - 1 • Substituting Eq. (22) for a in Eq. 
(2), we obtain Eq. (23) as follows. 

2 sfo 2 / 3 = u 2 2 + U 3 2 (23) 

Eq. (23) shows the cylinder where the center axis is a I axis. The 
point ( u 1 *, u 2 *, u 3 *) where the perpendicular line from the point 
( u I, u 2, u 3) intersects this cylinder is expressed as Eq. (24), by 
elementary geometry. 

Ul*= Ul } 
U 2 * = ./ 2 / 3 sfo U 2 / J · U 2 2+ u 3 2 

o 3 * = ,/ 2 / 3 sfo u 3 / J u 2 2+ u 3 2 

(24) 

Substituting Eq. (21) for u in Eq. (24), we can obtain Eq. (25) as 
follows. 

u i*= (al +a 2 +a 3)/,{3 } 
O' 2*=4 2sfo { - (3+/3) a I+ (3 -{3) a 2+ 2 f3 a 3 } I (6C) (25) 
u 3*={ 2 sfo { (3 -{3) a I - (3+{3) a 2+2 f3 a 3} /(6C) 

Substituting Eq. (25) for u in Eq. (22), we can obtain Eq. (9), 
described previously. And Eqs. (IO) '""'"' ( 13) can be led to by the similar 
procedure. 
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