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Abstract 
The paper analyzes the failure of composite steel-concrete beams 
with stud shear conn·ectors. Due to cracking damage in concrete, 
the studs fail in a brittle manner, exhibiting a post-peak decline 
of shear force with increasing slip. The load-deflection diagram of 
a. composite bea.n1 in which the stud failures propagate a.long the 
steel-concrete interface is analyzed and the size effect determined. 
A satisfactory agreement with the limited test data available in the 
literature is demonstrated. The :numerically calculated size effect is 
explained by energy analysis, which indicates that, in the usual case 
that the studs are not scaled, there is a reverse size effect for small 
sizes followed by a gradual transition to the usual asymptotic size 
effect of LEFM type for large sizes. In the case of perfect geometric 
scaling, in which the size of the studs and the steel-concrete interface 
area per stud are increased with the beam size, there is a compound 
size effect, in which the size effect in the failure of individual studs is 
superposed on the size effect due to the propagation of connection 
failure along the beam, resulting for very large sizes into a size 
hyper-effect that is stronger than that in LEFM. 
Key words: Beam, composite, concrete, failure, fracture, size effect, 
scaling, studs. 
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Fig. 1. a) Cross-section of the beam, b) Elevation of the half span, c) Approximate 
shear flow versus slip diagram of the stud connectors. 

1 Introduction 

Composite beams consisting of a steel beam and a concrete slab 
(Fig. la, lb) are often used as floors of buildings or as bridge struc
tures. The steel beam and concrete slab are typically connected by 
a large number of connectors, usually welded studs. These connec
tors need a certain slip between steel and concrete in order to get 
fully activated and develop their maximum shear force. There is no 
yield plateau, i.e., the shear force decreases after the peak as dama
ge develops. Those connectors at which a large slip occurs carry a 
lower force than others at which the slip corresponds to the maxi
mum force of the individual connector. This causes a size-dependent 
redistribution of forces among the individual connectors. 

The aim of the paper is to summarize the results of a previous 
study (Bazant and Vitek 1994) of the response of steel studs and 
give a preliminary report on the analysis of the size effect on the 
failure behavior of composite beams. 

2 Force-slip diagram of studs 

Analyzing a number of experimental observations (Oehlers, 1989; 
Wright and Francis, 1990; Eligehausen and Ozbolt, 1990; Rehm et 
al., 1992; Eligehausen et al., 1992; Eligehausen and Zhao, 1993), 
an approximate energy-based model for the failure and post-peak 
behavior of studs in composite beams has been developed by Bafant 
and Vitek, ( 1994). This led to the approximate piecewise linear 
diagram of the shear flow in connection versus its slip, as shown in 
Fig. le. For the first (virgin) loading, an initially vertical segment 
represents an increase of shear force without any slip. In the case 
of repeated loading, the initial perfect bond (represented by shear 
force development without any slip) does not exist any more and 
the diagram begins with a finite slope. However, this is not the case 
when a repeated load is superposed on a significant dead load. 
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Fig. 2. Intern.al forces and displacements of the composite beam element 

The second linear segment is a simplification of a rising curve 
leading to the shear flow peak. The first two linear segments of the 
diagram have been experimentally calibrated by the data of Elige
hausen and Zhao (1993). The third linear segment, approximately 
describing post-peak softening, has been predicted strictly on the 
basis of energy arguments (Bazant and Vitek, 1994). The last, four
th linear segment was assumed to describe frictional slip at constant 
stress equal to the residual shear strength. Only very limited and 
incomplete test data to verify the post-peak response of the connec
tion have been found. 

3 Load deflection curve 

The failure of a composite beam may be caused by failure of the 
steel beam, the concrete slab, or the connection. We are interested 
in the last cause of failure, and so the behavior of steel may be 
assumed to be within the linear elastic range. As an approxima
tion, we assume the same for concrete. Considering the beam to be 
sufficiently slender, we can describe it by one-dimensional theory of 
bending, with the shear strains·neglected. 

Fig. 2 shows an element of the beam. The steel part is subjected 
to internal forces Mi, Ni, Vi, and the concrete part to internal forces 
M2, N2 , 1/2. A vertical distributed load pis applied on the concrete 
slab. The interaction of the beam and slab is represented by shear 
flow T and by normal force q distributed along the interface. The 
total bending moment, normal force and shear force transmitted by 
the whole cross section are denoted as M, N, and V. The deforma
tions are characterized by deflection w, which is common to both 
parts of the cross section, slip v between steel and concrete, axial 
displacements ui in the steel beam centroid and u2 in the concrete 
slab centroid, and cross section rotations 'ljJ and I of beam and slab 
(Fig. 2). 
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Consider now a uniformly loaded, simply supported, symmetric 
beam. We assume sytmmetric response up to the peak load. At the 
midspan, the slip vanishes due to the symmetry. The half span may 
be divided into four intervals, in each of which the shear flow and 
the slip correspond to one of the four linear segments of the diagram 
in Fig. le, described by a linear equation, T = Tvv + T1 where Tv = 
dT / dv =constant = slope of the second segment of the diagram, and 
T1 = constant. The spatial coordinates x1, x2 and X3 of the dividing 
points between these intervals are unknown, cannot be explicitly 
calculated in advance, and vary as load increases depending on the 
behavior of the whole beam. They may be calculated by an iterative 
solution of the beam. 

The solution of the system of differential equations can be re
duced to one linear ordinary second-order differential equation with 
constant coefficients: v"-o:Tc = -[c/(R1+R2 )]v where a is a coeffi
cient depending on the stiffness of the beam, a= [(Z1 + Z2)(R1 + 
R2) + Z1Z2c2]/[Z1Z2c(R1 + R2)] Here Zi = EiAi (i = 1, 2) =axial 
stiffnesses and Ri = EJi ( i = 1, 2) = bending stiffnesses of the 
concrete and steel parts of the cross section, and T is shown in Fig. 
le. The coefficients for each linear segment of the force-slip diag
ram of the stud are different, and so one needs to solve a different 
equation for each of four corresponding intervals of the beam. The 
boundary conditions at the ends of each interval located at x1, x2 
and x 3 ensure the compatibility of intervals of the the beam. 

The four beams tested by Wright and Francis (1990) have been 
analyzed. The beams were 8 m long, consisting of a rolled steel I 
beam 312.5 mm deep and a concrete slab with profiled steel shee
ting, 115 mm thick and 2.5 m wide. The four beams differed in the 
stiffness of connection. Stud connectors were welded in one row at 
equal spacing along the beam. Beam No. 1 had 7 studs (of diame
ter 19. 0 mm, length 100 mm and tensile strength 450 MP a), beam 
No. 2 had 5 studs, beam No. 3 had 4 studs, and beam No. 4 had 
only 3 studs per half span. Concentrated loads were applied in four 
pairs, approximating a uniformly distributed load. The beams were 
first loaded suddenly (about 50% of the ultimate load) and then the 
load was raised monotonically to the ultimate load. The post-peak 
response could not be measured. The connection failed first, and 
the concrete slab cracked and failed subsequently. The slip between 
the slab and the steel beam has been also measured. Fig. 3 shows . 
comparison of the calculated load-deflection diagram with the test 
data, which is found to be acceptable. 
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Fig. 3. Comparison of measured and calculated load deflection cmves 

4 Energetic analysis of compound size effect 

Quasibrittle structures typically exhibit a size effect, which is un
derstood as a dependence of the nominal strength of the structure 
<7N on its size D (chosen characterisic dimension) when geometrical
ly similar structures are compared. In the case of similarity in three 
dimensions, which is the case here, O"N = Pmax/ D 2 where Pmax = 
the maximum of load, load resultant, or load parameter. In our ·case 
of distributed load p, we may define <7N = Pmax/ D and take D = 
depth of the beam. If the failure criteria are expressed exclusively 
in terms of stresses and strains, as in plasticity, <7N is always inde
pendent of D, i.e. there is no deterministic size effect (Bazant, 1984, 
1994; Bafant and Chen 1997; Bafant and Planas 1997). 

The size effect in the composite beam is an example of a com
pound size effect which represents the· superposition of two size effec
ts: (1) The size effect in the failure of a structure as a whole (macro
level), and (2) another size effect in the failure of a substructure
the individual connectors (mezzolevel). We will now try to calcu
late the compound size effect by analyzing the energy release. We 
consider again our example of .simply supported composite beam, 
but with arbitrary distributed or concentrated loading. The ben
ding moment and shear force in the composite beam may always be 
expressed in the form M(x) == PDq(~) and V(x) = Pq'(~) where 

=·load parameter, x = coordinate measured from the left end 
of the beam, ~ = x / D, q( 0 = some size-independent dimensionless 
function, q'(O = dq(0/d( 

First assume, for the sake of simplicity, that there are two re
gions of length a (Fig. 4 a) in which the studs are totally failed. 
In the sense of continuum smearing of the studs, these regions may 
regarded as two symmetric sharp interface cracks. The studs ahead 
of each crack are assumed not to slip at all. 

The concrete and steel ahead of the crack tip act as a composite 
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Fig. 4. a) Composite beam with crack-like propagating segments of failed studs, 

b) Size effect curves obtained by energy release analysis 
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beam of bending stiffness R = R1 +R2 +A1ci+A2c~ where A1, A2 = 
cross section areas of steel beam and concrete slab, and c1 , c2 = the 
eccentricities of their centroids from the centroid of the transformed 
cross section (Fig. 1 a). 

Behind the crack tip, the steel and concrete behave as two separa
te beams forced to deflect equally (we assume the slab not to lift abo
ve the steel beam). Therefore, M = M1 +M2, and since the curvatu
res of the steel beam and the slab are equal, their bending moments 
(for x <a) are M1 = MRif(R1 + R2) and M2 = MR2/(R1 + R2), 
respectively, and the bending energies per unit length of beam are 
Ml /2R1 and M:j /2R2. Summing the last two values, the total ben
ding energy of both parts per unit length of the cracked region of 
the beam is found to be M 2 /2(R1 + R2)· Likewise, the shear forces 
in steel and concrete behind the tip are V1 = V Si/ ( S1 + S2) and 
V2 = V 52/(51 + S2), and the total shear shear force V = Vi + V2. 
The shear energy behind the tip is V 2 /2(51 + S2), while in front of 
the tip it is V 2 /2S where 5 = shear stiffness of the composite cross 
section. 

The complementary energy of the left half of the cracked beam 
is: 

II*= fa ( [PDq(0]2 + [Pq'(0]2 ) dx+ 
Jo 2(R1 + R2) 2(31 + 52) 

1L/2 ([PDq(~)]2 [Pq'(~)]2) 
a 2R + 25 dx (1) 

where a = length of the cracks. By differentiation, the energy release 
rate of the beam: 

[
8II*] = [P Dq( a ))2 + [Pq' (a )] __ 2 = b Yer (2) 
aa P=Const. 2EsD4 R 2EsD2S 

where (R)-1 = EsD4[(R1 + R2)-1 R-11 and (S)-1 = EsD2 [(S1 + 
5 2)-1 - s-1], which are positive size-independent dimensionless pa~ 
rameters of the cross-section geometry. We may now set b9cr = 
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Gstudn/ s = energy dissipated by stud failures per unit length of 
beam, where b = width of the steel beam, G stud = energy required 
to fail one stud, s = longitudinal spacing of studs, and n = number 
of rows of studs across the width of the interface strip. From (2) we 
may calculate the nominal stress: 

P 1 2EsG studn 

aN = D2 = D {[q(a)]2_R-1 + [q'(a)]2S-1}s 
(3) 

Let us now assume that the cracks at failure of composite beams 
of different sizes are geometricq,lly similar, i.e. a/ D = a= constant 
(relative crack length at failure). From experience with various types 
of fracture, this is often a good assumption for a significant range 
of sizes. 

The stud failures are in reality spread over a certain finite len
gth, which we will denote as 2c0 . The behavior may be approximated 
by an effective (equivalent) sharp LEFM crack in the steel-concrete 
interface, having length a = o:oD+co where o:o = ao/ D and ao repre
sents the length with totally failed studs. By analogy with the size 
of the fracture process zone in quasibrittle materials, we may consi
der c0 and o:0 to be approximately constant, i.e., size independent. 
Now, substituting a= ao + (co/D) into (3) we may conveniently 
introduce Taylor series expansions q(o:) = q(o:o) +q1(o:o)co/ D+ ... = 
qo+q1(co/D)+q2(co/D)2+ ... and q'(a) = q'(o:o)+q"(o:o)co/D+ ... = 
qi+ q2( co/ D) + ... where qo, qi, q2, ... constants. Thus we obtain 

1 
aN= -

D 

We will now consider two basic geometrical types of scaling: 
Type I. The composite beam is scaled in proportion to D while 

the connection characteristics per unit area of steel-concrete inter
face remain constant (as would be the case for a bonded interface 
with a crack). In that case, n/ D, s and Gstud are constant, and so 
are D /n and the transverse spacing of stud rows, b/n. Then, if the 
series expansions are truncated after the first (linear) term, ( 4) can 
be rearranged to the form of the classical size effect law (I in Fig.4b ): 

(5) 

in which 

Do (6) 
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(7) 

Asymptotically, for very large D' (5) indicates that (JN ex D- 112
' 

which is the scaling of linear elastic fracture mechanics (LEFM). 
Type II. Not only the composite beam but also the connectors 

and their spacing are geometrically scaled. In this case, representing 
the complete geometric scaling of the entire structure including the 
substructure of studs (mezzolevel), one must take into account the 
effect of stud diameter don the nominal strength of the stud. Since 
d is now proportional to D, this may be done by expressing the 
energy required for failure of the studs per unit length of the beam 
as follows: 

Gstud =a NstudD20stud (8) 
Here 6stud is the effective slip displacement of studs, which cha
racterizes the energy dissipated and may be considered as constant 
for various stud sizes, while the nominal strength of the stud is 
subjected to size effect: 

CT so CT so 
a Nstud == 1 + (d/dso) = 1 + (D / Dso) 

(9) 

where d80 , Dso =constants. Using (8) and (9), ( 4) can be rearranged 
to the form: 

( 
D )-1/2 ( D )-1/4 

aN == Jasoabo 1 + Do 1 + Dso 

in which Do and CJbo are constants; 

Ai 
Do= co-, 

ao 
2n (D) abo = -A - EsDstud 
1Co S 

(10) 

(11) 

For very large sizes D, this expression leads to the asymptotic size 
effect (II in Fig. 4 b ): 

(12) 

It is at first surprising that this size effect, which may be called the 
size hyper-effect, is stronger than the LEFM size effect 1/ VD. The 
reason is that this is a compound size effect. The size effect due to 
failure of the beam as a whole (macrolevel) is amplified by the size 
effect in the failure of individual studs (mezzolevel). Obviously, from 
the viewpoint of the size effect, when the beam size is increased it 
is better not to increase the size of the studs if possible. This is the 
normal practice anyway, but is not feasible when the beam size is 
enlarged very much. 
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5 Concluding Comments 

Composite beams with deformable connection (often represented by 
welded studs) must have adequate safety margin against the failure 
of the connection, which means that the corresponding ultimate load 
capacity must be realistically calculated. A simplified analysis based 
on the beam theory is presented. It shows a reasonable agreement 
with experimental results. 

Because the connection failure is brittle rather than plastic, the 
nominal strength of beam corresponding to connection failure de
pends on the size of the beam. Two types of similarity are conside
red. For Type I, the studs and their spacing are of the same size but 
their number is increased in proportion to the flange width or beam 
size. The classical size effect law for quasibrittle failure is followed 
(although for small sizes the numerical results show a mild rever
se size effect, which results from variable stiffness of connectors at 
beams of different sizes, while their slip at failure is size indepen
dent). 

For Type II, the number of studs remains constant at all beam 
sizes but the stud size increases in proportion to the beam size. In 
that case there is a compound size effect which is stronger than 
predicted by the classical size effect law or by LEFM. 

Real beams follow neither Type I nor Type II scaling. The depth 
of the steel beams used in practice varies in the range from 0.3 
m for building floors to approximately 3 m for bridges. The slab 
thickness can vary in the range from 0.15 m to 0.5 m, which is 
much less than the depth of the steel beam. The stud sizes used are 
roughly proportional to the slab thickness (diameters 12 mm-32 
mm). Type II scaling does not represent the practice too well. Type 
I scaling is closer to reality. Anyhow, both scaling types represent 
limit cases. The beams used in practice will exhibit an intermediate 
size effect between these two limit cases. In any case, this means 
that the size effect may be stronger than for non-composite beams. 
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