Fracture Mechanics of Concrete Structures

Volume 1

Fracture Properties and Parameters

Edited by

Hirozo Mihashi and Keitetsu Rokugo

AEDIFICATIO Publishers

First Published 1998 by AEDIFICATIO Publishers Immentalstr. 34, D-79104 Freiburg, Germany Tel.: 0049-761-27 29 08; Fax: 0049-761-27 82 64 e-mail: aedificatio@t-online.de

ISBN 3-931681-22-X

Set of three volumes:	ISBN 3-931681-21-1
Volume 2:	ISBN 3-931681-23-8
Volume 3:	ISBN 3-931681-24-6

© 1998 AEDIFICATIO Publishers

Cover design by Dr. N. Nomura

All rights reserved.

No part of this publication may be reproduced, stored in a retrival system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of AEDIFICATIO Publishers

Printed in Germany

CONFERENCE ORGANIZATION

SCIENTIFIC COMMITTEE

Mihashi, H. (Japan), Chairman Bache, H.H. (Denmark) Bažant, Z.P. (USA) Belytschko, T. (USA) Bicanic, N. (UK) Carol, I. (Spain) Carpinteri, A. (Italy) de Borst, R. (The Netherlands) Elices, M. (Spain) Gettu, R. (Spain) Grauers, M. (Sweden) Hashida, T. (Japan) Horii, H. (Japan) Ingraffea, A.R. (USA) Karihaloo, B.L. (UK) Krajcinovic, D. (USA)

Li, V.C. (USA) Mai, Y.W. (Australia) Mang, H.A. (Austria) Mazars, J. (France) Modéer, M. (Norway) Reinhardt, H.W. (Germany) Rokugo, K. (Japan) Saouma, V.E. (USA) Shah, S.P. (USA) Shioya, T. (Japan) Stang, H. (Denmark) van Mier, J.G.M. (The Netherlands) Wang, M.L. (USA) Willam, K. (USA)

LOCAL ADVISORY COMMITTEE

Fujii, M. (Kyoto Univ.) Kamimura, K. (Kanto Gakuin) Koyanagi, W. (Gifu Univ.) Morita, S. (Kyoto Univ.) Nagataki, S. (Niigata Univ.) Nomura, S. (Tokyo Inst. Science) Okamura, H. (Univ. of Tokyo) Tanabe, T. (Nagoya Univ.) Tanigawa, Y. (Nagoya Univ.) Tomosawa, F. (Univ. of Tokyo)

LOCAL ORGANIZING COMMITTEE

Chairman:	Mihashi, M.			
Co-chairmen:	Horii, H.,	Rokugo, K.,	Shirai, K.	
Secretaries: Nomura, N.,	Hasegawa, T., Otsuka, K.,	Kitsutaka, Y., Shioya, T.,	Maruyama, K., Uchida, Y.,	Niwa, J., Umehara, H.
<i>Members :</i> Kim, J.K., Mizuno, E., Shinmura, R.,	Akita, H., Kinugasa, H., Nobuta, Y., Suzuki, R.,	Hatanaka, S., Matsushima, M., Oh, B.H., Tanabe, S.,	Igarashi, S., Mikame, A., Ohtsu, M., Tsubaki, T.	Kaneko, Y., Mishima, T., Sato, R.,
Corresponding Members :		Gupta, S.,	Ikeda, K.,	Ishiguro, S.,
Jung, JD.,	Kamada, T.,	Kono, S.,	Kurihara, N.,	Maekawa, K.,
Matsuoka, S.,	Moriizumi, K.,	Murakami, K.,	Nakamura, S.,	Niiseki, S.,
Shigeishi, M.,	Uchida, K.,	Ueda, T.		

SPONSORING ORGANIZATIONS

IA-FraMCoS

International Association of Fracture Mechanics for Concrete and Concrete Structures

Non-profit organization incorporated in the State of Illinois in 1991, with headquarters in Evanston, I11., USA.

Board of Directors:

- H. Mihashi, President
- F. H. Wittmann, Past President
- R. de Borst, President-Elect
- R. Gettu, Secretary
- Z. P. Bazant, Treasurer

JCI

Japan Concrete Institute

Non-profit corporate body under the justification of Minister of Construction. JCI was originally established in 1965 as the Japan National Council on Concrete.

Board of Directors:

T. Shiire, President

S. Ikeda, Vice-President

T. Sekiwa, Vice-President

Under the auspices of

ACI

American Concrete Institute

AIJ

Architectural Institute of Japan

JSCE

Japan Society of Civil Engineers

RILEM

International Union of Testing and Research Laboratories for Materials and Structures

Gifu University

Gifu Prefecture

Gifu Convention Bureau

LIST OF REVIEWERS

All the submitted abstracts and full papers were reviewed by the following members of the Scientific Committee and the Organizing Committee.

Akita, H. (Tohoku Institute of Technology, Japan) Carol, I. (Technical Univ. of Catalunia, Spain) Carpinteri, A. (Politechnico di Torino, Italy) De Borst, R. (Delft Univ. of Technology, The Netherlands) Elices, M. (Polytechnical Univ. of Madrid, Spain) Gettu, R. (Technical Univ. of Catalunia, Spain) Hasegawa, T. (Shimizu Co., Japan) Hashida, T. (Tohoku Univ., Japan) Horii, H. (Univ. of Tokyo, Japan) Ikeda, K. (Tohoku Univ., Japan) Ingraffea, A.R. (Cornell Univ., USA) Ishiguro, S. (Mie Univ., Japan) Karihaloo, B.L. (Univ. of Wales, UK) Kaneko, Y. (Shimizu Co., Japan) Kim, J.K. (Korea Advanced Inst. of Science & Technology, Korea) Kinugasa, H. (Tokyo Inst. of Science, Japan) Li, V.C. (Univ. of Michigan, USA) Mai, Y.W. (Univ. of Sydney, Australia) Mang, H. (Technical Univ. of Vienna, Austria) Maruyama, K. (Nagaoka Univ. of Technology, Japan) Mazars, J. (Ecole Normale Superieure de Cachan, France) Mihashi, H. (Tohoku Univ., Japan) Mizuno, E. (Chubu Univ., Japan) Niwa, J. (Tokyo Inst. of Technology, Japan) Oh, B.H. (Seoul National Univ., Korea) Ohtsu, M. (Kumamoto Univ., Japan) Reinhardt, H.W. (Univ. of Stuttgart, Germany) Rokugo, K. (Gifu Univ., Japan) Saouma, V. (Univ. of Colorado at Boulder, USA) Shah, S.P. (Northwestern Univ., USA) Shinmura, R. (Obayashi Co., Japan) Shioya, T. (Shimizu Co., Japan) Shirai, N. (Nihon Univ., Japan) Suzuki, M. (Tohoku Univ., Japan) Tsubaki, T. (Yokohama National Univ., Japan) Uchida, Y. (Gifu Univ., Japan) Ueda, T. (Hokkaido Univ., Japan) Umehara, H. (Nagoya Inst. of Technology) Van Mier, J.G.M. (Delft Univ. of Technology, The Netherlands) Wang, M.L. (Univ. of Illinois at Chicago, USA) Willam, K. (Univ. of Colorado at Boulder, USA) Wittmann, F.H. (Swiss Federal Inst. of Technology Zurich, Switzerland)

Illustrations

Head pages of all chapters are illustrated. Famous Japanese Indian ink drawings have been selected. All drawings belong to the great Japanese tradition of Zen drawings (Zenga).

Ref.: Kurt Brasch, ZENGA Mitteilungen der Deutschen Gesellschaft für Naturund Völkerkunde Ostasien, Supplementband XXV, Tokyo (1968)

Volume 1:

Isshi Bunshu (1608-1646)

Chapter One:	Bodhidharma, first patriarch of Zen-Buddhism.
Chapter Two:	Lotus Flower and wagtail

Hakim Ekaku (1685-1768)

Chapter Three:	Self portrait
Chapter Four:	Drawing of Ummon, a Chinese master of Zen
Chapter Five:	Drawing of Rinzai Gigen, founder of the Rinzai School
Chapter Six:	Daitô Kokushi as a beggar
Chapter Seven:	Bukan and his tiger

Volume 2:

Hakim Ekaku (1685-1768)

Chapter Eight:	Yuima Koji (Vimalakirti)
Chapter Nine:	Landscape with a small bridge
Chapter Ten:	Tokusan
Chapter Eleven:	Juttoku

Volume 3:

Sengai Gibon (1750 - 1857)

Chapter Twelve:	Kôan on "Lung – t`ans glory lasts for ever"
Chapter Thirteen:	Laôtse riding on the back of an ox
Chapter Fourteen:	Chotô Oshô, the monk with a boar's head
Chapter Fifteen:	Bodhidharma

PREFACE

"Fracture mechanics," in its broad aspects, represents an applied mechanics framework which is necessary for describing the behavior of cracked components under applied loads. Since the pioneering paper of Griffith in 1920, fracture mechanics has been applied to various kinds of materials and components. Nowadays it has been an important branch of engineering field. Although fracture mechanics was also applied to concrete and concrete structures in the beginning of 1960s already, most of engineers and even scientists were not convinced of the applicability.

Concrete is a kind of composite and very heterogeneous material. Consequently cracks are arrested when they encounter aggregates, and a large fracture process zone is developed in front of the main crack. That is the reason why the classical concept of fracture mechanics is not applicable to concrete, and some new concepts need to be developed. It was A. Hillerborg who performed the breakthrough. He proposed a model that became wellknown as "fictitious crack model" later, which represents a relation between transmitted stress over narrow crack and crack width (Hillerborg, A. et al. 1976, Cement and Concrete Research). This was the first idea of strain softening diagram for concrete under tension. The area under the diagram was defined as a fracture property which was called "fracture energy G_F " later.

In 1978, the first international technical committee on fracture mechanics of concrete was set up in RILEM (TC 50-FMC, chaired by F.H. Wittmann). This technical committee published a comprehensive state-of-the-art report together with the annotated bibliography (Wittmann, F.H. (ed.) 1983, Fracture Mechanics of Concrete, Elsevier), and recommended the test method to determine G_F . Then in 1985, the first international conference on fracture mechanics of concrete was organized by F.H. Wittmann in Lausanne.

Since then, the main subjects in fracture mechanics of concrete have been as follows: 1) What really occurs in the fracture process zone ? 2) Are there any parameters more suitable for fracture mechanics of concrete than G_F and what are the dominant factors influencing the parameters ? 3) How are the fracture process zone modeled, and how is the softening behavior numerically analyzed ? 4) Where and how could the nonlinear fracture mechanics be applied to concrete and concrete structures ? Size effect has been one of the noticeable topics.

From the beginning of 1980s, the research activities on fracture mechanics of concrete obviously increased and a number of papers on these subjects were published. While the number of international conferences on fracture mechanics of concrete increased after the middle of 1980s, Z.P. Bazant proposed to create an international association for remedying conferences held in disorder by arranging a series of the main conferences dealing with fracture mechanics of concrete. Thereby International Association of Fracture Mechanics of Concrete Structures (IA-FraMCoS) was founded and registered as a nonprofit organization in the State of Illinois in 1991. The name of the Association was changed to International Association of Fracture Mechanics for Concrete and Concrete Structures in the first general assembly meeting in 1992, while the abbreviated name remains as IA-FraMCoS. It was decided that FRAMCOS Conferences are organized at regular intervals (typically every three years), dealing with all aspects of fracture mechanics of concrete structures while changing sites among various continents and countries. The First International Conference on Fracture Mechanics of Concrete Structures (FRAMCOS-1) was held in Breckenridge, Colorado, U.S.A. in June 1992, organized by Z.P. Bazant. The Second International Conference on Fracture Mechanics of Concrete and Concrete Structures (FRAMCOS-2) was held in Zurich, Switzerland in July 1995, organized by F.H. Wittmann.

Besides these Conferences, three workshops ("Numerical Models and Material Parameters for Concrete Cracking" in Zurich 1992, "Size Effect in Concrete Structures" in Sendai 1993, and "Fracture and Damage in Quasibrittle Structures" in Prague 1994) were organized in cooperation with IA-FraMCoS. These Conferences and Workshops have shown that fracture mechanics of concrete is now one of the most exciting topics in the field of concrete engineering. Especially it is required to demonstrate how the fracture mechanics of concrete can be applied to solve the remained problems in the field of concrete engineering and design of concrete structures, and how it can contribute to their future development. Meanwhile real mechanisms in the fracture process zone have not been fully understood. "Generally accepted models" for mixed mode fracture and time dependent properties of cracking also have not been built up, yet.

The present proceedings of three volumes contain the invited and submitted contributions to the Third International Conference on Fracture Mechanics of Concrete and Concrete Structures (FRAMCOS-3) held in Gifu, Japan during October 12-16, 1998. The main objectives of the Conference are to present the state-of-the-art and to discuss future directions of science and engineering associated with fracture mechanics of concrete and concrete structures. The volume 1 deals with "Fracture Properties and Parameters," the volume 2 refers to "Numerical Models and Analysis," and the volume 3 is on "Structural Applications and Size Effect." These volumes clearly show the applicability of fracture mechanics of concrete to engineering problems. They will serve as a valuable reference on the recent development in fracture mechanics of concrete and concrete structures.

All the submitted papers were carefully reviewed by members of the Scientific Committee and the Organizing Committee. It is our pleasure to thank all the authors for their excellent contributions and all the reviewers for their very kind collaboration. We would also express our thanks to Dr. N. Nomura, Mr. N. Itagaki, Mr. K. Kirikoshi and Miss R. Hashimoto of Tohoku University for their efforts to help us editing the proceedings.

In closing, the financial support by Japan Concrete Institute, the Kajima Foundation, Japan Prestressed Concrete Contractors Association and Gifu Convention Bureau is gratefully acknowledged.

May 1998

The Editors Hirozo Mihashi Keitetsu Rokugo

Volume 1

Fracture Properties and Parameters

Contents

10.10			•	
Ρ	r	et.	я	ce
ж.	ж.	~ *	•••	$\mathbf{v}\mathbf{v}$

IX

1. Detection of Microcracking and Fracture Process Zone

Otsuka K., Date K. and Kurita T. Fracture Process Zone in Concrete Tension Specimens by X-Ray and AE Techniques	3
Choi S. and Shah S. P. Nondestructive Evaluation of Cement-Based Materials with Computer Vision	17
Leung C. K. Y., Elvin N., Olson N., Morse T. F. and He YF. A Novel Distributed Crack Sensor for Concrete Structures	25
Landis E. N. and Nagy E. N. Work of Load versus Internal Crack Growth for Mortar in Compression	35
Nemati K. M. and Stroeven P. Fracture Analysis of Concrete: A Stereological Approach	47
Kamada T., Iwanami M. and Nagataki S. Acoustic Emission Discrimination of Crack Types in Reinforced Concrete Beams	57
Munwam M. C., Ohtsu M. and Rossmatith H. P. Estimation of Stress Intensity Factors by SiGMA Procedure	67

2. Influence Factors on Fracture Properties

Trunk B. and Wittmann F.H. Influence of Size on Failure of Concrete Elements	79
Okada T. and Horii H. Effect of Specimen Size and Loading Rate on the Tension-Softening Curve Obtained by Back- Analysis Method	89
Sajna A. and Linsbauer H. N. Fracture Mechanics of Mass Concrete - Wet-Screening Procedure (FMWS)	101
Carmona S., Gettu R. and Aguado A. Study of the Post-Peak Behavior of Concrete in the Splitting-Tension Test	111
Rocco C., Guinea G. V., Planas J. and Elices M. Experimental Analysis of Rupture Mechanisms in the Brazilian Test	121
Guinea G. V., Elices M. and Planas J. Measuring the Tensile Strength Through Size Effect Curves	131

<i>Yin X., Stanton J. and Hawkins N.</i> Fracture Properties of High Strength Concrete	141
Chang T. P., Tsa K. L. and Lin B. R. Effect of Aggregate on Fracture Properties of High-Performance Concrete	151
Hassanzadeh M. The Influence of the Type of Coarse Aggregates on the Fracture Mechanical Properties of High-Strength Concrete	161
<i>El-Sayed K. M., Guinea G. V., Rocco c., Planas J. and Elices M.</i> Influence of Aggregate Shape on the Fracture Behaviour of Concrete	171
Mihashi H., Kirikoshi K., Nomura N., Otsuka K. and Kaneko Y. Microcracking Behavior and Softening Properties of Concrete	181
Lee K. M. and An K. S. Factors Influencing Fracture Toughness of Mortar-Aggregate Interface in Concrete	193
3. Microstructure and Fracture Properties	
Uchikawa H., Hanehara S. and Uzawa M. Microstructure and Properties of High-Strength Mortar Cured at Various Conditions	205
Nishikawa T., ItoS. and Awaji H Fracture Mechanics and Microstructure of Cement Mortar	223
Dela B. F. and Stang H. Crack Formation around Aggregates in High-Shrinkage Cement Paste	233
Igarashi S. and Kawamura M Reduction in Strength in High Strength Mortars at Long Ages	243
<i>Heinfling G., Reynouard J. M. and Duval C.</i> Contribution to the Analysis of the Effects of Pore Pressure on the Thermal Spalling of Concrete at High Temperatures	253
<i>Visser J. H. M. and van Mier J. G. M.</i> The Mechanical Behaviour of Hydraulic Fractured, Possibly Saturated Materials	269
Carpinteri A., Chiaia G. and Invernizzi S. Three-Dimensional Fractal Analysis of Microstructural Morphologies in Concrete	281
<i>Wada T., Sato R., Ishikawa C. and Ueda M</i> New 2-Dimensional Analytical Method for Determination of the Shape Properties of Concrete Crack Surfaces Using a Laser Beam	293
Yu G., Niwa J. and Tanabe T. Analysis of Plain Concrete Structures by the Finite Element with Inner Linkage Rods	305
<i>Iyengar K. T. S. R., Raviraj S. and Ravikumar P. N.</i> Analytical Study of Fictitious Crack Propagation in Concrete Beams Using a Bilinear σ-w Relation	315
Fujita Y., Ishimaru R., Hanai S. and Suenaga Y Study on Internal Friction Angle and Tensile Strength of Plain Concrete	325
Ikeda K., Yamakawa Y., Maruyama K. and Emoto M. Bifurcation and Fracture in Reinforced-Concrete Specimens under Compression	335

XIV

4. Fracture Parameters

<i>Niwa J., Sumranwanich T. and Tantermisirikul S.</i> New Method to Determine Tension Softening Curve of Concrete	347
Wu K. R., Yao W. and Li Z. J. Damage and Strain Softening of Concrete under Uniaxial Tension	357
Akita H., Koide H. and Tomon M. Uniaxial Tensile Test of Unnotched Specimens under Correcting Flexure	367
Mechtcherine V. and Müller H. S. Effect of the Test Set-Up on Fracture Mechanical Parameters of Concrete	377
Uchida Y. and Barr B. I. G. Tension Softening Curves of Concrete Determined from Different Test Specimen Geometries	387
<i>Reinhardt H. W. and Xu S.</i> Numerical Experiments and Characteristics of the New K _R -Curve for the Complete Fracture Process of Three-Point Bending Beams	399
<i>Xu S. and Reinhardt H. W.</i> Analytical Solution of the Fictitious Crack and Evaluation of the Crack Extension Resistance for a Griffith Crack	409
Yao W., Wu K. R. and Li Z. Fracture Process Zone of Composite Materials as Concrete	421
Xu S. and Reinhardt H. W. Determination of the Double-K Fracture Parameters in Standard Three-Point Bending Notched Beams	431
Hanson J. H. and Ingraffea A. R Behavior of Concrete Round Double Beam Fracture Toughness Test Specimens	441
5. Fiber Reinforced Cementitious Composites	
Kitsutaka Y. and Oh-oka T. Fracture Parameters of High-Strength Fiber Reinforced Concrete Based on Poly-Linear Tension Softening Analysis	455
Kurihara N., Uchida Y., Kamada T., Arakawa T. and Rokugo K. Evaluation of Properties of Steel Fiber Reinforced Concrete by Means of Tension Softening Diagrams	465
Ishiguro S. Mode I Fracture Behavior of Natural Fiber Reinforced Concrete	477
Kabele P. and Li V. C. Fracture Energy of Strain-Hardening Cementitious Composites	487
Nakamura H. and Mihashi H. Evaluation of Tension Softening Properties of Fiber Reinforced Cementitious Composites	499
Stang H. and Olesen J. F. On the Interpretation of Bending Tests on FRC-Materials	511
Sumitro S. and Tsubaki T Microfractural Pullout Model of Steel Fiber Reinforced Concrete	521

<i>Tsubaki T. and Sumitro S.</i> Numerical Simulation Model for Mechanical Behavior of Fiber Reinforced Concrete	531	
Matsumoto T. and Li V. C. Fatigue Crack Fracture and Arrest in Fiber Reinforced Concrete under Interfacial Bond Degradation	541	
Lange-Kornback D. and Karihaloo B. L. Optimum Design of Plain and Fibre-Reinforced Concrete Mixes Based on Fracture Mechanics	551	
Van Hauwaert A. and van Mier J. G. M. Computational Modelling of the Fibre-Matrix Bond in Steel Fibre Reinforced Concrete	561	
6. Rate of Loading and Cyclic Loading		
Lambert D. E., Ross C. Dynamic Fracture, Crack Velocity, and Strength Response of Cementitious Materials	575	
<i>Ulfkjaer J., Labibes K., Solomos G. and Albertini C.</i> Tensile Failure of Normal Concrete and Steel Fiber Reinforced Concrete at High Strain Rates	585	

-	
Zhao H. and Gary G. Analysis of Specific Experimental Problems in Dynamic Testing of Conrete	593
Burlion N., Gatuingt F., Pijaudier-Cabot G. and Dahan N Concrete under High Compaction: A New Experimental Method	605
Gatuingt F., Pijaudier-Cabot G., Burlion N., Daudeville L. and Bouet T. Contribution of a Concrete Compaction Model to an Impact Problem	615
Toumi A., Bascoul A. and Turatsinze A. Microscopical Observation of Mode I Crack Propagation in Concrete Subjected to Fatigue	625
Kessler C. and Müller H. S. Experimental Investigations on Fracture and Damage of Concrete due to Fatigue	635
Cangiano S., Plizzari G. A. and Slowik V. Experimental Investigation into the Fatigue Crack Growth in Concrete	645
Ueda T., Sato Y., Kakuta Y. and Tadokoro T. A Study on Crack Propagation in Concrete under Cyclic Loading	655
Ferreira L. E. T., Sousa J. L. A. O. and Bittencourt T. N. Load Relaxation in Level II Three-Point Bend Tests	665
Lundgren K. and Gylltoft K. Modelling Splitting and Fatigue Effects of Bond	675
Ragueneau F., Mazars J. and La Borderie Ch. Damage Model for Concrete Including Residual Hysteretic Loops: Application to Seismic and Dynamic Loading	685
Suzuki M. and Ibayashi K. Lifetime Seismic Reliability of Reinforced Concrete Structures	697
Sadeghi K. Proposition of a Damage Indicator Applied on R/C Structures Subjected to Cyclic Loading	707

Watanabe H., Kawano H. and Eguchi S. Shear Strength of RC Members under Load Reversals

717

7. Influence of Loading Condition

Gàlvez J. C., Céndon D. A., Planas J., Guinea G. V. and Elices M. Fracture of Concrete under Mixed Loading: Experimental Results and Numerical Prediction	729
Alfaiate J. and Pires E. B. Mode I and Mixed Mode Non-Prescribed Discrete Crack Propagation in Concrete	739
Garcia-Álvarez V. O., Gettu R. and Carol I. On Non-Planar Fracture in Concrete	749
Davies J. Experimental Study of Crack Propagation in the Modified Punch-Through Shear Specimen in Mixed-Mode Loading	761
Ozbolt J., Reinhardt H. W. and Xu S. Numerical Studies on the Double-Edge Notched Mode II Geometry	773
Ishihara S., Mihashi H. and Rokugo K. Experimental Study on the Mechanical Behavior in Construction Joints of Concrete Structures	783
Wang M. L. and Chen Z. Experimental and Numerical Investigations of Concrete Failure under Triaxial Loading	793
Mizuno E. and Hatanaka S. Constitutive Model for Concrete under Non-Proportional Loading	803
Yang Y. Strain Field Measurement Using Image Processing, Applications in Damage and Fracture Testing	815

Subject Index

XXVII

Author Index

XXXVII

Volume 2

Numerical Models and Analysis

Contents

8. Computational Modelling

de Borst R. A Class of Gradient-Dependent Damage Models for Concrete Cracking	827
Sluys L. J. Modelling of Crack Propagation with Embedded Discontinuity Elements	843
Lackner R. and Mang H. A. Simulation of Local Failur of Concrete Plates on the Basis of Error Control	861
Bicanic N., Thavalingam A., Liao Z. and Pearce C. Discontinuous Deformation Analysis Framework for Modelling Concrete Fracture	877
van Mier J. G. M. Lattice Type Models for Fracture: Methodology and Future Prospects	887
Kitoh H., Takeuchi N., Ueda M., Kambayashi A., Higuchi H. and Tomida M. Fracture Analysis of Steel Plate Anchors in Concrete by Using RBSM	901
<i>Meguro K. and Tagel-Din H.</i> A New Simplified and Efficient Technique for Fracture Behavior Analysis of Concrete Structures	911
Arai R., Shibata T., Hayano H., Kohno K., Mori K. and Okamoto T. Modelling and Verification of Microcrack Propagation in Concrete	921
Moriizumi K., Shirai N. and Suga H. Fracture and Softening Analysis of Concrete with Particle Model	931
Hiraiwa T., Nanbu Y., Arai M., Kurokawa Y., Mori H. and Tanigawa Y. Fracture Simulation of Concrete by Visco-Elasto-Plastic Suspension Element Method	939
Hassani N., Takada S., Akahori Y. and Nakajima K. An Experimental-Numerical Study for Determination of Concrete Fracture Physical Parameters in DEM	949
Delaplace A., Roux S. and Pijaudier-Cabot G. Tensile Cracking Viewed as Bifurcation and Instability in a Discrete Interface Model	961
Meftah R., Reynouard J. M. and Salomon M. G. Higher Order Beam Theory in Gradient Plasticity: Description of Failure Modes with Warping	971
Geers M. G. D., de Borst R. and Peelings R. H. J. Damage Analysis of Notched Concrete Beams Loaded in Four-Point Shear	981

Ghavamian Sh., Mazars J., Cleason C., Gylltoft K. and Paultre P. Geometric Non-Linear Effect in the Behaviour of Damageable Structures. Preditcion of the Ultimate Capacity Using a Simplified Approach	993
Gupta S. and Tanabe T. 3D Analysis Using Unified Concrete Plasticity Model with Reinforcement under Compression Modelled as Beam Element	1005
Shi Z. and Nakano M. Numerical Approach Based on the Energy Criterion in Fracture Analysis of Concrete Structures	1015
9. Fundamental Consideration and Numerical Models	
<i>Huet C.</i> Continuum Fracture Thermodynamics, Energy Release and Overall Properties Bounding of Damaging Viscoelastic Composites with Solidification	1027
Hasegawa T. Multi Equivalent Series Phase Model for Nonlocal Constitutive Relations of Concrete	1043
Bazant Z. P. and Prat P. C. Stress-Strain Relation for Elastic Material with Many Growing Microcracks	1055
Gutiérrez M. A. and de Borst R. Damage Evolution in Concrete Considering Stochastic Material and Boundary Imperfections	1065
Nagai G., Yamada T. and Wada A. Stress Analysis of Concrete Material Based on Geometrically Accurate Finite Element Modeling	1077
Prasad M. V. K. V. and Krishnamoorthy C. S. Adaptive Finite Element Analysis of Concrete Fracture Based on Cohesive Model	1087
<i>Zhu M. and Chang W. V.</i> An Unsymmetrical Fracture Process Zone Model and its Application to the Problem of a Radial Crack with an Inclusion in Longitudinal Shear Deformation	1097
<i>Cervenka J., Cervenka V. and Eligehausen R.</i> Fracture-Plastic Material Model for Concrete, Application to Analysis of Powder Actuaded Anchors	1107
Ishida J. A Study on Constitutive Theory of Elasto-Plastic Analysis in Finite Element Method	1117
Song HW., Kim IS., Na UJ. and Byun K. J. A Unified Modeling of Strain Localization in Concrete and its Finite Element Implementation	1127
Zhang D. and Wu K. Influence Factors Matrix Method for Simulation of Fracture Process of Concrete	1137
Bosnjak D., Kanstad T., BjØntegård Ø. and Sellevold E. J. Self Induced Stresses in High Performance Concrete at Early Ages: Experimental Results and Materials Modelling	1147
Amanat K. M. and Tanabe T. Non Local Computational Modeling of the Softening Behavior of Early Age Concrete	1157

10. Compressive Failure in Over-Reinforced Concrete Beams

<i>van Mier J.</i> Failure of Concrete under Uniaxial Compression: an Overview	1169
Markeset G. Strain Softening and Structural Analysis of Beams Failing in Compression	1183
Kang H. D., Spacone E. and Willam K. J. A Study of Compressive Failure in Over -Reinforced Concrete Beams	1195
Bascoul A., Duprat M. and Pinglot M. Load Deflection Diagram of Over-Reinforced Concrete Beams	1211
<i>Légeron F., Mazars J. and Paultre P.</i> Prediction of the Behavior of Over-Reinforced Concrete Beams with Two Levels of Simplified Approach	1223
Ozbolt J., Li YJ. and Eligehausen R. 3D Finite Element Analysis of Over-Reinforced Beams	1233
König G., Meyer J. and Sint A. Round Robin Analysis on Modelling of Over-Reinforced Concrete Beams - Calculation Load Deformation Behaviour of Concrete Beams with the BDZ-Model	on of the 1241
<i>Ulfkjaer J. P.</i> Experimental Investigation of Over-Reinforced Concrete Beams of Three Different T Concrete and at Two Different Size Scales	ypes of 1253
Concrete and at 1 wo Different Size Scales	
11. Numerical Analysis of Concrete Structures	
	1263
11. Numerical Analysis of Concrete Structures Okamura H. and Kim I. H.	
 11. Numerical Analysis of Concrete Structures Okamura H. and Kim I. H. Size Effect and Failure of RC Structures under Earthquake Elfgren L. and Noghabai K. Anchor Bolts and Tension Stiffening of Rebars - Two RILEM Round Robin Investig 	ations
 11. Numerical Analysis of Concrete Structures Okamura H. and Kim I. H. Size Effect and Failure of RC Structures under Earthquake Elfgren L. and Noghabai K. Anchor Bolts and Tension Stiffening of Rebars - Two RILEM Round Robin Investig on Bond Tork B., Galvez J., Planas J. and Elices M. 	ations 1279 1291
 11. Numerical Analysis of Concrete Structures Okamura H. and Kim I. H. Size Effect and Failure of RC Structures under Earthquake Elfgren L. and Noghabai K. Anchor Bolts and Tension Stiffening of Rebars - Two RILEM Round Robin Investig on Bond Tork B., Galvez J., Planas J. and Elices M. Splitting Cracks in Reinforced Concrete Elements under Tensile Loads Ichinose T., Lin W. and Bolander Jr. J 	ations 1279 1291
 11. Numerical Analysis of Concrete Structures Okamura H. and Kim I. H. Size Effect and Failure of RC Structures under Earthquake Elfgren L. and Noghabai K. Anchor Bolts and Tension Stiffening of Rebars - Two RILEM Round Robin Investig on Bond Tork B., Galvez J., Planas J. and Elices M. Splitting Cracks in Reinforced Concrete Elements under Tensile Loads Ichinose T., Lin W. and Bolander Jr. J Effect of Rib Shape and Splice Length on the Strength of Lap Splices without Stirrup Plizzari G. A., Klink T. and Slowik V. 	ations 1279 1291 ps 1301 1311

Sato R., Xu M. and Ujike I. Effect of Tension Softening on Time-Dependent Deformation and Crack Width of Reinforced Concrete Flexural Members 1341

Salem H. M. and Maekawa K. Coupled Bond and Bridging Stress Transfer in Cracked Reinforced Concrete	1353
van Zijl G. P. A. G., de Borst R. and Rots J. G. Finite Element Analysis of Cracking due to Shrinkage	1363
Reid S. and Sedra S. Interaction of Creep, Shrinkage and Shrinkage-Induced Cracking of Concrete	1377
Claeson C. and Gylltoft K. Finite Element Analysis of Slender Concrete Columns Subjected to Eccentric Loading	1387
Matsukura M., Ueda M., Uchiyama T. and Wada T. Material Nonlinear Analysis of Prestressed Concrete Beams with Curved Tendons	1397
Shirai N., Moriizumi K. and Tamura M. Formulation of Shear Strength Design Formula for Reinforced Concrete Beams Considering Size Effect	۱ 1407
An X. and Maekawa K Numerical Simulation on Shear Failure of RC Beams	1419
Hawkins N. and Kono S. Shear Strength Evaluations of Reinforced Concrete Beams	1429
Masuda A., Matsuoka S., Takeda Y. and Watanabe T. A Study on Shear Capacity of RC Beam Based on Fracture Mechanics	1441
Matsuo S., Matsuoka S., Yanagi H. and Doi S. Failure Behavior of the RC Columns with Steel Fiber as Shear Reinforcement	1451

Subject Index

XXVII

Author Index

XXXVII

Volume 3

Structural Applications and Size Effect

Contents

12. Material Properties, Detailing and Structural Performance

Maekawa K. and An X. Post-Yield Shear Failure of RC Column and Its Ductility Simulation	1463
Kanda T., Watanabe S. and Li V. C. Application of Pseudo Strain Hardening Cementitious Composites to Shear Resistant Structural Elements	1477
Noghabai K. and Olofsson T. Load Carrying Capacity of Beams Using Fibres as Shear Reinforcement	1491
<i>Wollrab E., Ouyang C. and Shah S. P.</i> Fracture Behavior of Reinforced High Strength Concrete Tensile Members	1501
Johansson M. Concrete Frame Corners in Civil Defence Shelters Subjected to Negative Moment	1511
<i>Ozbolt J., Li YJ. and Eligehausen R.</i> 3D Cyclic Fracture Analysis of Beam-Column Connections	1523
Bazant Z. P. and Vitek J. L., Size Effect in Composite Beams with Deformable Connections	1537
Noghabai K. and Olofsson T. Effect of Tension Softening of Concrete on the Tension Stiffening of Rebars in Plain and Fibrous Concrete	1547
Fantilli A. P., Terretti D., Iori I. and Vallini P. Behaviour of Lightly Reinforced Concrete Beams by Means of Fracture Mechanics and Bond-Slip	1557
<i>Ruiz G., Arbilla I. and Planas J.</i> Influence of the Reinforcement Cover on the Brittle to Ductile Transition of a LRC Beam	1567
13. Maintenance and Deterioration	
Koyanagi W. Fracture Process and Maintenance of Concrete Structures	1579
Irhouma A. M., Ayari M. L. and Robinson L. C. Effect of Low Temperature on Fracture Energy of Concrete Joints and Repair Materials	1593
<i>Irobe M. and Peng S. Y.</i> Finite Element Analysis of Thermal Crack in Gravity Dam Caused by Annually Oscillating Environmental Temperature	1605

Barpi F., Valente S., Ferrara G. and Imperato L. Experimental and Numerical Evaluation of Gravity Dam Model Failure Lifetime	1615
Morimoto H. and Koyanagi W. Practical Model of Crack and Bond Slip for Thermal Crack Analysis	1625
Borri-Brunetto M., Carpinteri A. and Chiaia B. Contact, Closure and Friction Behaviour of Rough Crack Concrete Surfaces	1635
Kamada T., Kunieda M., Kurihara N., Nishida Y. and Rokugo K. Evaluation of Roughness of Joint Concrete Surfaces and Bond Properties	1645
Hansen E. J. and Saouma V. E. Numerical Simulation of Reinforced Concrete Deterioration	1655
Matsuo T. and Kanazu T. Crack Propagation Analysis of Concrete due to Expansion of Reinforcement Corrosion	1669
Shimmura A. and Saouma V. E. The Study of Water Leakage through Fracture in Reinforced Concrete	1677
Bazant Z. P., Jin W. and Meyer C. Microfracturing Caused by Alkali-Silica Reaction of Waste Glass in Concrete	1687
Schorn H. and Kopp St. Detecting Freeze-Thaw Deterioration of Concrete by a Fracture Mechanics Method	1695

14. Repair and Retrofit

<i>Wittmann F. H.</i> Application of Fracture Mechanics to Optimize Repair Systems and Protective Coatings for Reinforced Concrete Structures	1707
Li V. C. Repair and Retrofit with Engineered Cementitious Composites	1715
Katsumata H., Kimura K. and Kobatake Y. Seismic Retrofitting Technique Using Carbon Fibres for Reinforced Concrete Buildings	1727
Horii H., Kabele K., Takeuchi S., Li V. C., Matsuoka S. and Kanda T. On the Prediction Method for the Structural Performance of Repaired/Retrofitted Structures	1739
Granju J-L. About the Debonding of Thin Cement-Based Overlays	1751
Triantafillou T. C. Fracture Mechanics Approaches to Concrete Strengthening Using FRP Materials	1761
Buyukozturk O., Leung C., Hearing B. and Gunes O. Delamination Criterion for Concrete Beams Retrofitted with FRP Laminates	1771
Leung C. K. Y. Delamination Failure in Concrete Beams Retrofitted with a Bonded Plate	1783
Brosens K. and Van Gemert D. Plate End Shear Design for External CFRP Laminates	1793
Karbhari V. M. Materials and Design Considerations in FRP Rehabilitation of Concrete Structures	1805

<i>Lim Y. M. and Li V. C.</i> Characterization of Interface Fracture Behavior in Repaired Concrete Infrastructures	1817
<i>Ohtsu M. and Yoshimura S.</i> LEFM Prediction and Repair Strategy for Crack Extension due to Corrosion of Reinforcement	1829
Kunieda M., Kurihara N., Uchida Y. and Rokugo K. Shrinking and Cracking Behavior of Repair Materials for Concrete Structures	1841
Kono S., Tsuruda S. and Kaku T. Evaluation of Bond Behavior at the Interface Between Two Different Concretes	1851
Li Z. W., Yuyama S., Ohsawa I., Kimpara I., Kageyama K. and Yamaguchi K. Fracture Mechanics Study of Concrete Beams Reinforced with FRP Sheets by a Moment Tensor Analysis of Acoustic Emission	1863
Matsushima H., Watanabe T., Yasui M., Koyanagi W. and Aoki T. Fracture and Fatigue Strength of Slabs Repaired with D-Rap Method	1873
Hamada Y., Sakai H., Tasaka H., Hattori A., Miyagawa T. and Mashima M. Probabilistic Study on the Tensile Strength of Multiple-FRP Tendons	1883
Ando N., Matsukawa H., Kawamura M., Fuji M., Miyagawa T. and Inoue S. Experimental Studies on the Long-Term Tensile Properties of FRP Tendons	1893
15. Scaling Theory and Size Effect	
Bazant Z. P. Size Effect in Tensile and Compression Fracture of Concrete Structures: Computational Modelling and Design	1905
van Vliet M. R. A. and van Mier J. G. M. Experimental Investigation of Size Effect in Concrete under Uniaxial Tension	1923
<i>Trunk B. and Wittmann F. H.</i> Experimental Investigation into the Size Dependence of Fracture Mechanics Parameters	1937
Carpintieri A., Ciola F., Pugno N., Ferrara G. and Gobbi M. E. Application of the Boundary Element Method to the Compressive Strain-Softening Behaviour of Concrete	1949
Markeset G. and Hansen E. A. Replica Scaling and Size Effects in Concrete	1963
Kim I K Yi S T and Fo S H	

Size Effect of Concrete Compressive Strength for the Non-Standard Cylindrical Specimens1973Li Y.-J., Ozbolt J. and Eligehausen R.
Size Effect on the Concrete Compression Failure Load1983Kim J. K., Yi S. T., Yang E. I. and Eo S. H.
Size Effect for Flexural Compression of Concrete Specimens1993Lourenço P. B.
Simulations of Size Effect in Masonry Structures2001Hu X.1993

Hu X. Size Effects in Touhgness Induced by Crack Close to Free Edge 2011

Xi Y. Minimum Size of Concrete Specimens for Linear Elastic Fracture Analysis	2021
Qian J., Luo H. and Huang J. The Effect of Brittleness on Strength of Concrete	2031
Ozbolt J. and Eligehausen R. Different Aspects of the Size Effect in Concrete and RC Structures	2041
Shioya T., Kuroda M., Akiyama H., Nakano M. and Kawamura Y. Design Method for Large Reinforced Concrete Circular Slabs	2051
Bazant Z. P. and Becq-Giraudon E. Size Effects in Shear Fracture of Reinforced Concrete Beams	2063
Oh B. H., Jeon S. J., Hong K. O. and Kim D. B. Size Effects of Reinforced Concrete Beams in Shear	2075
Morgan A. S. E., Niwa J. and Tanabe T. Non-linear Size Effect Analysis of Headed Anchors Embedde in Concrete Blocks under Various Supporting Conditions	2083
Yoshii Y., Tanabe S., Ohura A., An X. and Mishima T. Finite Element Analysis of Pulling-Out Behaviour for RC Footing Supported By Four Piles	2093
Vitek J. L. Steel Fibre Reinforced Concrete Beams - Size Effect	2103
Oh B. H., Jeon S. J., Yang I. H. and Kim D. B. Size Effect on Flexural Resistance due to Bending Span of Concrete Beams	2113
Koide H., Akita H. and Tomon M. Size Effect on Flexural Resistance due to Bending Span of Concrete Beams	2121

Subject Index

Author Index

XXVII XXXVII

XXV