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Time-Dependent Fracture of Concrete using Fractional Order Rate Laws 

Fabrizio Barpi & Silvio Valente 
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ABSTRACT: The interaction between strain-softening and time-dependent behaviour is analysed in the case 
of quasi-static fracture. A fractional order rate law is coupled with a micromecanical model for the fracture 
process zone. In this way, a whole range of dissipative mechanisms is included in a single viscous element. 
This problem is analised through the finite element method and the cohesive (or fictitious) crack model. The 
comparison with creep tests executed on prenotched beams shows a good agreement. 

INTRODUCTION 
The long term performance of concrete structures is 
fundamentally affected by the behaviour of the mate­
rial after cracking. In the concrete, instead of a well 
defined crack tip, there is a diffused damage zone 
within which micro-cracking increases and stresses 
decrease as the overall deformation increases. This re­
sults in the softening of the material in the so called 
fracture process zone (FPZ). The size of this zone can 
be compared with a characteristic dimension of the 
structure and can vary during the evolutionary pro­
cess. In this context, a numerical method (based on 
finite or boundary elements) has to be used together 
with the cohesive or fictitious crack model (Barenblatt 
(1959), Dugdale (1960) and Hillerborg et al. (1976)). 

The interaction between strain-softening and time 
dependent behaviour is analysed, with the emphasis 
on very slow or quasi-static fracture. This is the case 
of cracking in massive concrete structures like dams, 
where inertial forces can be neglected. 

For this problem, three approaches have been pro­
posed. The first is based on the concept of activa­
tion energy and rate dependent softening and has been 
developed in a series of papers by Bafant and co­
workers (Bafant and Jirasek (1993), Bafant and Gettu 
(1992), Wu and Bafant (1993)). 

The second approach is based on the inclusion of 
a rheological model for creep and relaxation, whose 
mechanical properties are obtained by fitting exper­
imental tests (Hansen (1991), Zhou and Hillerborg 
(1992), Carpinteri et al. (1995), Barpi et al. (1998)). 

The third is based on a micromechanical 
model which combines time-dependent and time­
independent information. One of these models was 
proposed by Santhikumar and Karihaloo (1996), 
Santhikumar et al. (1998). The time-independent part 

- of this model is based on the concept of effective 
spring, which derives from a micromechanical model 
for the static softening behaviour of the concrete 
in the fictitious process zone proposed by Huang 
and Li (1989). In the present paper this approach is 
enhanced using a fractional order rate law and is 
applied to the numerical simulation of the three-point 
bending tests described by Zhou (1992). 
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2 RHEOLOGICAL MODEL 
Rheology is concerned with time dependent deforma­
tion of solids. The first problem that arises is how 
complex the linear viscoelastic model must be, i.e., 
what is the minimum number of material parame­
ters that is required for an accurate description of the 
observed material behaviour. It has been argued, see 
Bagley and Torvik (1983), that it is sufficient to use as 
few as four parameters for the uniaxial stress situation 
(two elastic constants, one relaxation constant and the 
non-dimensional fractional order of differentiation). 

Figure 1 represents the simplest rheological model 
of the linear standard viscoelastic solid. 

The springs are characterized by linear stress­
displacement relationships defined by Hooke's law 
with constant moduli of elasticity E1 and E2 : 

(la) 

(lb) 

The dashpot is based on fractional derivative oper­
ator of order a E (0, 1): 

(2) 



Figure 1: Linear standard viscoelastic solid. 

where the fractional differentiation of a function 
y(t) is defined according to Gel'fand and Shilov 
(1964) and Oldham and Spanier (1974) (see also 
Carpinteri and Mainardi (1997)). 

In particular: 

n-(l-a)y(t) = [ <I>1-a(t - t) y(t)dt, (3) 

where: 

ca 
<I>1-a(t) = r(l ~a) . { t if t > 0 

with t+ = 0 if t < 0 

(4) 
In the previous expression r represents the Gamma 

function. A convergent expression for the a-order 
fractional derivative operator na is given by: 

Day(t) = D1 n-(l-a)y(t) = 

:t [ <I>1-a(t - t) y(t)dt = 

= 1 i 1t y(t) dt 
f(l-a) dt 0 (t-l)-a ' (S) 

In the case of a = 1 the classical dashpot with an 
integer order rate law is obtained from Eq. 2. In par­
ticular the solutions for the relaxation problem (under 
constant w) and for the creep problem (under constant 
(j) become of exponential type, with r 1 as the relax­
ation time, and r1 E

1Jt:2 as the retardation time. 

The normalized stress relaxation functions ;(~~~) 
vs. non-dimensional time J_ are plotted in Fig. 2 for 

TJ 

the case E1 = E2 while the normalized creep func-
tions wJ(;~~) vs. non-dimensional time k are plotted 
in Fig. 3 for the case E1 = E 2 . 

2.1 Numerical integration of constitutive response 
A possible approximation for the fractional differen­
tiation of a function y(t) is (see Oldham and Spanier 
(1974)): 
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Figure 2: Stress relaxation function. 
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Figure 3: Creep displacement function. 

with: 

ny = y(nf:j.t), 

and 

r(j - a) 
r(-a)r(j + 1) · 

(7) 

(8) 

The following recursion formula simplifies the cal­
culation of bj (a): 

r(j - a) 
f(j + 1) 

(j - 1 - a) r (j - 1 - a) 
j f(j) 

(9) 



The coefficients bj (a) are given by: 

b0 (a) = 1, b1 (a)= -a, ... , 

(k -1- a) 
bk( a)= k bk-1(a),... (10) 

This finite difference approximation is applied to 
Eq. 2, and integrated over time, using the General 
Midpoint Rule (see Enelund et al. (1999)). 

3 FICTITIOUS PROCESS ZONE 
In each point of the fictitious process zone a microme­
chanical approach to tension softening is combined 
with the above rheological model according to a strat­
egy proposed by Santhikumar and Karihaloo (1996) 
and Santhikumar et al. (1998). 

3.1 Micromechanical model 
Tension softening behaviour appears when the dam­
age in the material has localized along eventual frac­
ture planes. This behaviour has been successfully 
modelled using two- and three-dimensional microme­
chanical models (Huang and Li (1989), Karihaloo 
(1995)). All models provide a relationship between 
the residual tensile stress carrying capacity and crack 
opening displacement (COD) as a function of known 
concrete microstructural parameters, e.g. aggregate 
volume fraction V1, Young's modulus Ee, ultimate 
tensile strength ft and fracture toughness of the ho­
mogenized material Kjgm (see Fig. 4). According to 
these models, the function is assumed to be: 

w 
(11) 

All the microstructural material parameters are in­
cluded in the factor (3. 

During the loading phase each point of the FPZ 
moves on the same stress-COD curve. Later on this 
condition does not hold any longer, due to the com­
bined effect of viscosity and damage. Analogously, 
during the loading phase all pairs (CJ, w) are located 
on the above mentioned curve and during the load sus­
tained phase this condition does not hold any longer. 

4 INTERACTION BETWEEN RHEOLOGICAL 
AND MICROMECHANICAL MODELS 

In order to understand how the rheological and mi­
cromehanical models interact, three simple cases are 
analized: 

1. if the displacement discontinuity w is kept con­
stant along time step b:.t, a stress relaxation i::.CJ 
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Figure 4: Cohesive stress-COD law ((3 = 0.05). 

occurs according to the standard viscoelastic el­
ement described; 

2. if the stress CJ is kept constant along time step 
b:.t, a creep displacement b:.w occurs according 
to the standard viscoelastic element described; 

3. if both stress CJ and displacement discontinuity 
w are forced to stay on the static curve (Eq. 6 
and Fig. 4) one of the two increments occurs as 
predicted by the rheological element, while the 
other is equal or smaller. 

Figure 5 shows the stiffnesses for the two basic 
cases. In greater detail, for the first case the unload­
ing stiffness is assumed (effective spring hypothesis) 
while, for the second case, the stiffness tangent to the 

stress-COD curve 1*l is taken into account. 
At the end of each time step, the microcrack pattern 

changes and both stiffnesses are updated, as shown in 
Fig. 5 (where both of them are reduced). It is worth 
noting that each point follows a different path and, 
hence, exibits a different stiffness, while E1 = E2 and 
T1is constant. A creep increment of (3 induces the dot­
ted curve in Fig. 5 (right). 
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Figure 5: Stress paths and associated stiffnesses. 

The previous three cases concern a single degree of 
freedom system. The related response diagrams, for 
integer order rate laws (a= 1) were published by San­
thikumar and Karihaloo ( 1996) and Santhikumar et al. 
(1998). 



5 GLOBAL ANALYSIS 
In the present work, the continuum surrounding the 
process zone is assumed as linear elastic. All non­
linear and time-dependent phenomena are assumed to 
occur in the process zone. When the fictitious crack 
tip advances by a pre-defined length, each point lo­
cated on the crack trajectory, is split into two points. 
The virtual mechanical entity, acting on these two 
points only, is called cohesive element. The local be­
haviour of such an element follows the rules men­
tioned in the previous section. Each cohesive element 
interacts with the others only through the undamaged 
continuum, external to the process zone. According to 
the finite element method, by taking the unknowns to 
be then nodal displacement increments, flu, and as­
suming that compatibility and equilibrium conditions 
are satisfied at all points in the solid, we get the fol­
lowing system of n equations with n + 1 unknowns 
(flu, fl.A or flt). 

The creep effect is incorporated by simply adding 
the pseudo-load induced by relaxation to the load vec­
tor in the equilibrium equations (Bacca et al. (1991), 
Barpi et al. (1999)): 

(Kr+ Cr) flu fl.AP+ fltQ, (12) 

where: 

• Kr: positive definite tangential stiffness matrix, 
containing contributions from linear elastic (un­
damaged) elements and possible contributions 
from cohesive elements having((), w) below the 
curve of Fig 4. The conditions in which this pos­
sibility applies will be described later on; 

• Cr: negative definite tangential stiffness matrix, 
containing contributions from cohesive elements 
with ((), w) on the curve of Fig 4; 

• P: the vector of external load; 

• fl.A: maximum load multiplier which is compati­
ble with Eq. 11 and the fictitious crack tip growth 
condition(() = ft); 

• Q: vector of unbalanced load (or pseudo-load) 
due to relaxation in the process zone, related to a 
unitary time increment. 

During the loading phase, the behaviour of the ma­
terial is assumed to be time-independent (Q = O), the 
external load changes, fl.A # 0, and flt = 0. On the 
contrary, during the sustained loading phase, the be­
haviour of the process zone is assumed to be time­
dependent (Q # 0), the external load is kept constant, 
fl.A = 0, and flt# 0. 

6 INTERACTION BETWEEN COHESIVE ELE­
MENTS 

During the loading phase all the stress path in the FPZ 
are forced to follow the stress vs. COD law (see Fig. 4 

and Eq. 11). For the boundary condition analysed in 
the present paper, no interaction problem occurs dur­
ing the loading phase and the condition dw > O is al­
ways and everywhere satisfied. 

A different situation occurs during the next loading 
phase (sustained). The unloading stiffness, computed 
as shown in Fig. 5 tends to oo when w tends to o+. 

In order to prevent numerical problems, a threshold 
value need to be assumed for w. A cohesive element 
is classified as active, and submitted to the rheological 
model, when and only when its w is bigger than the 
threshold, assumed equal to 0.018wc. Otherwise the 
stress path is forced to follow the stress vs. COD law 
as it occurs during the loading phase. 

~ 
dw; C 

Figure 6: Possible stress and displacement incre­
ments. 

According to the rheological model, for each active 
cohesive element, it is possible to compute the stress 
relaxation under constant w ( d(Ji) as well as the creep 
displacement under constant() (dwi). Goal of the in­
teraction analysis is to compute the real value of d(J 
and dw wich must be compatible with global Eq. 12 
and with the local d(Ji and dwi. 
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The compatibility conditions can be grouped in the 
following cases : 

1. full relaxation only: d(J = d(Ji < O and dw < dwi 
(see segment AB in Fig. 6); 

2. full creep only: d(J < d(Ji < 0 and dw = dwi (see 
segment BC in Fig. 6); 

3. full creep with elastic increment: d(J = ( dw -
dwi)E1 > 0 and E 1 > 0 and dw > dwi (see seg­
ment CD in Fig. 6); 

4. full creep with softening increment: d(J = ( dw -
dwi)E1 < 0 and E 1 < 0 and dw > dwi (see seg­
ment CF in Fig. 6). 

In order to follow this process of classification, an 
inner loop must be introduced. Since the incremental 
problem is formulated as linear with threshold, each 
physical time step has to be divided in numerous log­
ical substeps. When case (3) or (4) are applied, the 



matrix coefficients of Eq. 12 are changed from one 
substep to the next. Otherwise it is kept constant dur­
ing all the substep iterations. For such a problem it 
is not possible to prove, in general, the existence and 
uniqueness of the solution. 

During the numerical simulation of three-point 
bending tests, the following conditions have been sat­
isfied: 

1. each cohesive stress relaxation ( d£7 :S 0) induces 
everywhere dw > 0, 

2. dw is an increasing function of the distance, 
computed along the FPZ, starting from the fic­
titious crack tip; 

3. all cohesive elements at the beginning are clas­
sified in group (1), i.e., full relaxation only. Af­
terwards group (2) starts to appear and so on for 
groups (3) and (4); 

4. the fictitious process zone can be divided in two 
parts. In the first part, located near the fictitious 
crack tip, all elements are fully relaxed (condi­
tion (1) above). In the second part, located near 
the real crack tip, one of the remaining three con­
ditions is applied. 

Since these preliminary conditions are veryfied, the 
following strategy leads to a solution: 

1. the element near the fictitious crack tip is full re­
laxed, the condition dw < dwi is verified every­
where; 

2. the above operation is repeated moving towards 
the real crack tip; 

3. as soon as the real crack tip reaches the condition 
of "full creep with elastic increment", its positive 
stiffness is added and the relaxation procedure is 
carried on. At this time the boundary between the 
two above mentioned parts of the FPZ starts to 
exist; 

4. as soon as the previous condition is reached by 
the element near the real crack tip, the same 
procedure is applied and the above mentioned 
boundary moves toward the fictitious crack tip; 

5. each time a cohesive element enters in the "full 
creep with softening increment" condition, the 
smallest eigenvalue of matrix (KT + CT) de­
creases. Creep rupture time is reached when it 
becomes negative . From that time on, the exter­
nal load can no longer be kept constant. 

7 THREE-POINT BENDING TESTS 
The experimental tests, executed on prenotched 
beams, described by Zhou (1992), were simulated nu­
merically. 

The experimental procedure is based on two 
phases: 

• the external load grows from zero to the nomi­
nal level (a fraction of the maximum load Pmax) 
under deflection control (5 x 10-6 mis); 

• the load is kept constant until the creep rupture 
occurs. 

These tests are usually associated with the name of 
pre-peak sustained bending tests. Of course, in order 
to know the maximum load Pmax ~ 900 N, a number 
of static tests have to be previously executed. To over­
come this problem, different authors preferred to use 
the so-called post-peak tests where the creep phase 
starts beyond the peak point (see Carpinteri et al. 
(1997) and Barpi et al. (1999)). 

The specimen dimensions are 10 x 10 x 80 cm, the 
notch depth is 5 cm, while the material properties, as 
decribed in Zhou (1992), are presented in Table 1: 

Table 1: Material properties. 

E lJ gF ft 
(GPa) (-) (Nim) (MPa) 

I 36 I 0.10 I 82 I 2.8 I 

8 COMPARISON BETWEEN EXPERIMENTAL 
AND NUMERICAL RESULTS 

The numerical simulations were executed using the 
values listed in Table 1 and Table 2, and neglecting 
the time dependent behaviour of the undamaged ma­
terial. The finite element mesh published by Barpi and 
Valente (1998) were used. Since the above mentioned 
behaviour starts when the stress reaches a significant 
level, time zero of each cohesive element precedes 
the arrival time of the fictitious crack tip. It has been 
set 17J0 s before the beginning of the sustained loading 
phase. 

Table 2: Numerical parameters (constant strain ele­
ments). 

We 71 flt 71 {J 
(mm) (s) (-) (-) 

I 2.2 10-4 I 150 I 1150 I o.o5 I 

Element size 
(mm) 

2.50 

Figure 7 shows the load level vs. the logarithm of 
the failure lifetime (creep rupture time), for different 
values of the fractional derivative order a. The best 
fitting of the experimental results is achieved assum­
ing a= 0.3. Experimental and numerical results ap­
pear to be in good agreement. 
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Figure 7: Experimental and numerical load level vs. 
failure lifetime. 

CONCLUSIONS 

• A realistic non-linear behaviour at global level 
does not require necessarily a non-linear model 
at local level. A linear viscoelastic rheological el­
ement, combined with a suitable micromechani­
cal model can be used. 

• To achieve the above mentioned goal, a new time 
integration scheme is proposed. The incremental 
problem is formulated as linear with threshold. 

• A fractional order rate law has been shown to 
be a useful tool that makes possible to include 
a whole spectrum of dissipative mechanisms in a 
single viscous element. 

• It is also useful to include an upper limit to the 
initial values of the unloading stiffness (when 
<J ~ ft). When the hypothesis of linear unload­
ing towards the origin predicts a larger value, 
the time dependent behaviour is neglected and 
the stress path is kept on the static curve (<J vs. 
COD). 

• When the time dependent behaviour of the un­
damaged material is neglected, in order to make 
up for this simplification, in each point of the fic­
titious process zone, the zero value of time has 
been assumed before the arrival time of the ficti­
tious crack tip. 
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