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ABSTRACT: Stress-strain relationships have been traditionally derived following a phenomenological ap
proach. Here, we adopt a microstructural mechanics approach to model the development of fracture in con
crete. The concrete is assumed to have an underlying microstructure of lattice type. The micro-mechanically 
based stress-strain relationship is incorporated into a finite element method to evaluate its performance. Uni
axial tensile tests are simulated using different sizes of the finite element mesh. A comparison with experi
mental results has been studied. 

1 INTRODUCTION 

Stress-strain relationships used for modeling the me
chanical behavior of materials has been traditionally 
derived following a phenomenological approach, 
without explicit considerations of the microstructure 
of the material. Here, we adopt a microstructural 
mechanics approach to model the development and 
propagation of fracture in concrete, which is as
sumed to have an underlying microstructure of lat
tice type. Although the lattice does not directly re
flect the microstructure of concrete, it has been 
demonstrated as a useful model for the description of 
concrete fracture (Schlangen & Van Mier 1992, 
Schlangen 1993, van Mier 1997), in pa1iicular when 
a microstructure is projected on a lattice and corre
sponding properties are assigned to relevant ele
ments in the lattice. In this microstructural mechan
ics approach, we aim to derive the stress-strain 
relationship of the concrete based on the geometrical 
and material properties of the underlying lattice 
structure. Since a lattice network of particles can 
represent a lattice network of beams, we adopt the 
approach used in granular mechanics (Chang and 
Liao, 1990, Chang and Ma, 1990, 1991, Chang, 
1998, Suiker et. al, 1999, Liao et. al, 2000) to derive 
the stress-strain relationship for concrete. 

In what follows, we first show the relationship 
between a lattice network of beams and a lattice 
network of particles. On this basis, the stress-stain 
relationship is derived for a continuum with under
lying lattice structure. Then, the stress-strain rela
tionship is incorporated into a finite element method 
to simulate specimens under uniaxial tension tests. 
This is followed by a discussion on the effects of 
lattice alignment and sizes of the finite element 
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mesh. Predicted results are also compared with ex
perimental results to evaluate the performance and 
applicability of the model. 

2 LATTICENETWORK 

A set of randomly located points can be represented 
as a lattice network by connecting these points with 
lines. If the lines are regarded as beams, the lattice 
network becomes a frame structure, which has been 
demonstrated as a useful model for the description of 
concrete fracture (Schlangen 1993, van Mier 1997), 
in particular when a microstructure is projected on a 
lattice and corresponding properties are assigned to 
relevant elements in the lattice. 

Alternatively, if the randomly located points are 
assigned some suitable sizes, they can be considered 
as a lattice network of particles, which are connected 
by springs at contact points. The lattice network of 
particles has been used extensively in granular me
chanics to represent a granular medium (Digby 1981, 
Walton 1987, Cambou et. al. 1995, Chang and Gao 
1996). In principle, the representation of a lattice 
network of beams is equivalent to a lattice network 
of particles. As schematically shown in figure 1, 
dashed lines represent the lattice network of beams, 
which overlay the lattice network of particles. In 
what follows, we first describe the interaction of two 
particles in a lattice network. Next we will demon
strate that the behavior of a lattice beam can be rep
resented by the behavior of an equivalent system of 
two particles connected by springs. 

In a lattice network of particles, the movement of 
a particle can be defined by means of the translation 
ui and the rotation wi at the patiicle centroid. The su-



Figure l. Lattice network of beams and the equivalent lattice 
network of particles, 

per-script 'n' indicates that the movement is refereed 
to the n-th particle. For two contact particles con
nected by springs, the relative displacement 8;"" and 
the relative rotation e;"" between two particles can 
be obtained from the motion of particles, given as 
follows: 

B;'111 = al' -al (1) 

(2) 

where the quantity euk is the permutation symbol 
used in tensor representation for the cross product of 
vectors. The superscript 'n' of the length vector ri 

indicates that it is measured from the centroid of 
particle 'n' to the contact point 'c' of the particles 'n' 
and 'm'. 

The particle interaction can be modeled by two 
types of spring stiffness: displacement stiffness, and 
rotational stiffness. The displacement stiffness in
cludes the normal stiffness kn and the shear stiffness 
k.1.. The rotational stiffness includes the twisting 
stiffness g,, and the rolling stiffness gs. The super
script 'nm' shows that the inter-particle prope1ties 
are referred to the contact of particles 'n' and 'm'. 

The relative displacement 8; and the relative rota
tion Bi in Equations (1) and (2) are related to the 
contact force fi and the contact moment mi at the in
ter-particle contact. A general expression can be 
given 

(3) 

1n;"" = G'//"B"/" (4) 

in which the contact stiffness tensor Ku and rotation 
stiffness tensor Gu are the quantities in the global 
coordinates system. They can be obtained in terms of 
contact stiffness kn, ks, g11 and gs. 

(5) 

G'//" = g;;111
n'.1111 n}111 + g~111

( s;'111 s}111 + t;'111t}111
) (6) 

where ni, Si and t; are the basic unit vectors of the 
local coordinate system constructed at each inter
particle contact. The vector n; is the outward normal 
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to the contact plane. The other two orthogonal vec
tors s; and t; are on the contact plane. In a spherical 
coordinate system, a vector can be defined by two 
angles y and ~ as in a spherical coordinate system 
e.g., 

ii = sin y cos /3 T + sin y sin /3 ] + cosy k 
s = cos y cos f3 T + cos y sin /3 ] - sin y k 
t =-sin f3 T +cos /3 ] 

(7) 

For a two dimensional case (gn = 0) and for two
particles in contact (assuming equal size particles 
i.e., r = 112), the interaction of two particles can be 
given as follows in a matrix form 

{J} = [ K]{u} (8) 

where the vector (f) represents forces f, , J;. and mo-
ment m, and the vector {u} represents displacements 
ux , Uy and particle rotation m. The superscripts refer 
to particle number 1 or 2. 

ur =Ux1,J),m1,f,2,f>~'m2) 
{ r ( I I I 2 2 2) U = Ux,Uy,(J) ,Ux,Uy,(J) 

and the matrix [ K] is 

kll 0 0 -kll 0 0 

0 ks 
k,.l 

0 -ks 
k,.l 

2 2 

0 
k,.l k./ + 0 

_k) k)2 

2 4 gs 2 
4-gs 

(9) 

-kll 0 0 kl! 0 0 

0 -ks 
_k) 

0 ks 
_ k,.l 

2 2 

k,.l k)2 
0 

_k) k 12 
0 4-gs _s_+g 

2 2 4 s 

We now compare the stiffness matrix of the two
particle system with that of a beam. For a beam, the 
stiffness matrix is 

{J} =[M]{u} (10) 

where the vector {fl and the vector { u} are in the 
same form as above, except that the forces, moment, 
displacements and rotation are values at the two ends 
of the beam. 

The stiffness matrix [M] for the beam is given by 



Ai,12 

I 

0 

0 

A 12 
__ b_ 

I 

0 

0 

0 0 

12 61 

61 4z 2 

0 0 

-12 -61 

61 212 

- Ai,12 

I 

0 

0 

Ai,12 

I 

0 

0 

0 0 

-12 61 

-61 21 2 

(11) 

0 0 

12 -61 

-61 41 2 

where Eb is the Young modulus, I is the moment of 
inertia, and Ab is the cross section area of the beam. 

It is noted that Equations (9) and (10) are identi
cal if the following relationships hold true between 
the properties of beam and inter-particle springs. 

k = EbAi, . k = 12Ebl 
II l ' .I' z3 

Eb! 
gs=-[-

(12) 

(13) 

Therefore, by selecting appropriate spring con
stants, the behavior of a two-particle system is iden
tical to that of a beam as schematically shown in fig
ure 2. The cross in the circle between two particles 
represents the normal, shear and rotational springs. 

Figure 2. Equivalence of beam and particle systems 

3. EQUIVALENT CONTINUUM 

A lattice network of beams and a lattice network of 
particles are discrete systems. We now treat the lat
tice network of beams as an 'equivalent' continuum 
and derive the stress-strain relationship of the con
tinuum based on the geometrical and material prop
erties of the lattice structure. Since we have shown 
that a lattice network of beams can be represented by 
a lattice network of particles, the approach used in 
granular mechanics is adopted in the process of ho
mogenization. 
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We select one regular triangle as a unit cell, 
which can be conceived as three particles connected 
by springs. Over the cell, we construct a linear field 
of displacement and a linear field of rotation. 

(14) 

where the superscript 'o' refers to the selected refer
ence point (e.g. the centroid) of the cell (see figure 
3). We also define two length measures for the mi
cro-structure of the cell, namely, 1J; which represents 
the length vector from centroid to the i-th side, and 
I; which represents the length vector of the i-th side. 

li 

Figure 3. The regular triangle unit cell of a lattice network 

Substituting Equation (14) into the kinematic 
equations of two contact particles (Equations (1) and 
(2)), it follows 

(15) 

(16) 

Based on Equations (15) and (16), two contin
uum variables are identified for the cell: the rotation 
gradient m;:j and the 'micro-polar strain' given by 

(17) 

which has the same form as those used in the micro
polar model (Eringen 1966) and Cosserat model 
(Cosserat and Cosserat 1909). Furthermore, using 
the principle of energy balance 
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f( (jijfij + µijmj,i) dV = L (!/ Jt + m~en (18) 
c=I 

the Cauchy stresses and couple stress can be derived 
as follows: 

and the stress-strain relationship becomes: 

o-mq = Cmqkic:ii + Dmqpjm;,p 

µpj = D pjmqc:;;,q + Fpjrtm;'., 

(19) 

(20) 



where 

1 "'\:" l' zczc l' Dpjmq = -- LJ eukKiq k mT/p v c 

(21) 

Fpjrt = _!_ L [eijkeqtmKi~ziz,~,r;~rt + o;,z;z~] 
v c 

For a two-dimensional case of a hexagonal lat
tice network based on regular triangular cells, there 
are two basic configurations of regular triangles. 
One is shown in figure 3. The other is in opposite di
rection of that in figure 3, with the angle pointing 
downward. For this triangular cell with opposite di
rection, the stress-strain relationship is the same as 
Equation (21), except that the values of Dmqpi and 
Dpimq have negative signs. If uniform deformation oc
curs in a region of the hexagonal lattice that covers 
triangles in opposite directions, the average values of 
D111qpi and Dpimq in Equation (21) are zero. 

In order to compare Equation (20) with the con
ventional form of stress-strain relationship, we de
fine the symmetric and anti-symmetric terms of 
stress in a two-dimensional case, 

0"12 + 0"21 . T = 0"12 - 0"21 

2 ' 2 
(22) 

We also define the symmetric and anti-symmetric 
terms of strain 

Y = E12 + E11 = ll2,1 + u,,2 ; I// = U2,1 - u,,2 

r = (u2,1 -u,,2)-2W = E12 - E21 

Note that 

(23) 

(24) 

The anti-symmetric strain I' is the relative rotation 
between rigid body rotation If and particle rotation 
2m. The work done by 't' y + T I' is the same as that 
by 0"12 E12+ 0'21 E21. Using the new variables, the 
stress-strain relationship according to Equation (21) 
is given in a mattix form by 

2G 2Gv 
0 0 0 0 

0"11 1-v 1-v E11 

0"22 2Gv 2G 
0 0 0 0 Ezz 

r 1-v 1-v y 

T 0 0 G 0 0 0 r 
(25) 

µ13 
0 0 0 '¥ 0 0 

(J)3,I 

µ23 
0 0 0 0 K 0 

(1)3,2 

0 0 0 0 0 K 
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where G is the shear modulus and v is the Pois
son's ratio. IJf is the 'spin' modulus, which relates 
the anti-symmetric part of stress and strain. The 
value K is the 'bending' modulus, which relates the 
rotation gradients and couple stresses. This stress
strain equation is in the same form as the plane 
stress condition of Cosserat model (see for example, 
Chang and Ma (1989), Sluys (1992)). 

The constants for the equivalent continuum can 
be related to the spring constants in a lattice spring 
system or to the beam properties in a lattice beam 
system. 

G= FJ(k +k.)= FJ(E&A.ii +12EblbJ 
2 II ,\ 4 l 13 

1-r~Y 
V= kn-ks=~ 

3k, +k, 3+( T J 
12FJEblb 

z3 

(26) 

(27) 

(28) 

(29) 

The area Ab is equal to hl. In Equations (26) and 
(27), the expressions of Poisson's ratio and shear 
modulus in terms of properties of lattice beams are 
identical to that given by Schlangen and Garboczi 
(1997). It is noted that when ks and g, are zero, the 
lattice spring system is reduced to a central force 
spring network. In that case, the Poisson's ratio is 
1/3. When ks is very large compared to k,,, the Pois
son's ratio is close to -1. 

For a given element with known modulus and 
Poisson's ratio, the ratio of hll can be obtained from 
Equation (27). Since the size of the underlying lat
tice structure is known, using Equation (26) the val
ues of all quantities of the underlying lattice struc
ture can be determined: l, h, Ab, lb and Eb. In the 
fracture analysis, we also need to know the tensile 
strength of a lattice beam f, so that the fracture of a 
lattice beam can be determined by the axial force of 
a lattice beam given by 

F =( E&A.ii Jo l II 

(30) 

where E" is the Young's modulus of beams, 8,, is 
the elongation of the lattice beam. The fracture crite
rion for a lattice beam is 

(31) 

Let E be the tensile strain of concrete along the 
direction of a lattice beam such that the elongation 



of the lattice beam is El. Using Equations (30) and 
(31), the fracture criterion can be rewritten in terms 
of concrete strain 

E~_l_ 
Eb 

(32) 

The criterion can also be written in terms of con
crete stress (]' = Ec, which can be deduced as: 

E (J'<-f, 
- Eb I 

(33) 

where the limiting value of (]'can be considered as 
the tensile strength of concrete. Note that the criteria 
in Equations (31-33) depend on the lattice proper
ties. 

Since the underlying lattice network has three di
rections of lattice beams, the fracture criterion has to 
be checked in all three directions. As soon as the 
beam reached its allowable tensile strain, it is broken 
and completely loses its load bearing capacity. No 
softening law is imposed. The failure criterion is 
similar to that used by van Mier (1997). It is also 
noted that the tensile strength of concrete is influ
enced by the alignment of its underlying lattice 
structure. Therefore the material is anisotropic. 

For example, we assume that the lattice structure 
is aligned in the same manner as figure 3. After the 
beam in the second direction has reached its allow
able strain, the three load bearing members are now 
reduced to two. Using Equation (33) and taking the 
damage of one beam into account, we have the fol
lowing stress-strain matrix relationship 

{(J'}=(C]{E} 

where 

r

l7K11 +3K" 

[C] = .J3 
12 

3(K11 - K,) .J3(K11 - KJ 1 
3(3K11 + KJ .J3(3K

11 
+ K,) 

3K,, +17K" 

(34) 

(35) 

It is noted that the stiffness matrix still show a 
load bearing capacity in the direction in which the 
beam is broken. The strongest material axis for this 
damaged material is not perpendicular to the direc
tion of damage. This is a feature that differs from 
usual damage models. 

In the same manner, after the system is stretched 
more, and assumes additional failure occurs on the 
second beam in the third direction. The lattice 
structure now has only one active beam left and the 
stress-strain matrix is further reduced to 

31 

[C]=¥ 
r;:;rK11 

(36) 

This matrix is singular. The material has now 
completely lost its load bearing capacity in the di
rection-2. 

4 FINITE ELEMENT ANALYSIS 

Based on the model presented above, finite element 
analyses have been carried out for samples under 
unaxial tension. Sample of bars (12x 46.765 x 1 
mm3

) with three different mesh sizes were consid
ered (l =lmm, l =1.5mm and l =2mm) as shown in 
figure 4. Each element of the mesh is a regular trian
gle with an underlying lattice structure aligned in the 
same way. It is noted that even though the mesh 
sizes are different, their underlying structure is as
sumed to have the same size (1 mm in this case). 
Therefore, we expect the three samples to have the 
same mechanical response. To start the crack, two 
weak zones as material imperfections were assigned 
in the middle of the bar as indicated by the dark ar
eas of Figure 4. For all three samples, the same input 
material parameters are given as follows: E = 21220 
(MPa), v (Poisson's ratio)= 0.15, Ji= 4.16 (MPa), l 
=3.16 (MPa) for the weak zones. 

Figure 4. Three different mesh sizes (a) 1=1111111, (b) l=l.5111m 
and (c) l=2111m with horizontal alignment 

In a standard continuum damage model, the mesh 
size has significant effects on the mechanical re
sponse, especially after the peak load. Under the 
uniaxial test conditions, the cracks usually pass 
through one row of elements, regardless the size of 
elements used. Therefore, the energy dissipation of 
the system becomes mesh size dependent, which is 
the major disadvantage of the usual damage models 
or smeared crack models (Rots, 1988). 

The calculated crack zones from the present fi
nite element analyses are significantly different from 
the usual damage model. The developed crack bands 



are rather wide as compared to the localized cracks 
in the usual damage model. The presently calculated 
crack bands cover several rows of elements. The 
numbers of rows of elements depend on the size of 
mesh. The patterns and total area of the crack bands 
are nearly the same for the three meshes. 

The width of crack band in the present example is 
obtained with.fr= 3.16 MPa. for the weak zone. The 
predicted width of crack band becomes naiTOwer if a 
smaller value of fr is used, and vice versa. Therefore 
the pattern of strain localization is affected by the 
initial conditions of inhomogeneity. It is noted that 
even though the crack band is narrower, the bands 
still cover several rows of elements. 

We also observe that for all meshes the mechani
cal responses are nearly identical. For the three dif
ferent mesh sizes, the evolution of strain contours 
during the crack propagation is similar. The strain 
localization starts to develop from the weak zones, 
which moves forwards to the middle part of the 
sample. The small cracks finally coalesce into a 
major horizontal crack across the mid-section of the 
bar. The evolution of strain distribution in the lon
gitudinal section is shown in figure 5. From figure 5, 
it can be observed that the width of the crack band is 
approximately 14 mm. 
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Figure 5. Evolution of strain distribution in longitudinal direc
tion for l=2mm 

In order to show that the results of the three mesh 
sizes are nearly identical, we plot the strain variation 
for the three mesh sizes at a given load level. The 
strain variations of the three mesh sizes are very 
close as a typical plot shows in figure 6. 

It is commonly known that the stress-strain rela
tionship for the uniaxil test differs depending on the 
distance of the two points selected for the stress
strain measurement across the crack band. The 
length between the two selected points is termed as 
the reference length. For the purpose of proving that 
the mesh size has no effect on the mechanical re
sponse, we have chosen four reference lengths: 7 
mm, 14 mm, 21 mm and 46 mm. 

We plot the relative displacement of the "two 
points versus the applied load. For a reference length 
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Figure 6. Comparison of strain distribution of the three lattice 
sizes 

equal to 7 mm or 14 mm, the two measuring points 
are located within the crack band and the strain can 
be considered as relatively uniform. However, when 
the reference length is 21 mm or 46 mm, the strain 
between the two measuring points is not uniform. 
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Figure 7. Load-displacement curves for reference length lref = 7 
mm 
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Figure 8. Load-displacement curves for reference length lref = 
21 mm 

The load-displacement curves for reference 
lengths 7 mm and 21 mm are shown in Figures 7 and 
8. The results show no sensitivity to the mesh sizes. 
It is noted that in a conventional damage model, the 
strain localizes into a single row of elements. The 
amount of energy release continues to decrease, as 
the mesh is refined. This type of mesh sensitivity 
does not reflect the physical reality; it is caused by a 
loss of ellipticity in governing equation. In the pres
ent stress-strain relationship, material instability that 
occurs after two beams are broken of the triangle 



unit in an element (see Equation 34). At the onset of 
strain localization (i.e, if only the first beam is bro
ken), the system has not yet lost its ellipticity and 
still has a load bearing capacity. Thus the stress can 
be redistributed due to the microstructure of lattices, 
and it avoids the problem of mesh-sensitivity. The 
present model is found to have a behavior similar to 
that of a rate-dependent material as observed by 
Sluys (1992) - the results are mesh-insensitive but 
sensitive to the initial conditions of inhomogeneity. 

It is also noted that the present microstructural 
approach keeps track of the behavior of the micro
structure of the underlying finite elements. There is a 
conceptual link to an internal length coming from 
micro-polar properties as the models by Muhlhaus et 
al. (1987) or from strain gradient models by de Borst 
et al. (1992, 1995), or non-local models by Bazant 
et. al (1984) and Pijaudier and Bazant (1987). For 
these regularized models, the results are not only 
mesh-insensitive but also insensitive to the initial 
conditions of inhomogeneity. 

In the following case, we simulate the experi
ments of uniaxial tensile tests on double notched 
specimens carried out at TUDelft (Shi et. al. 1999). 
The specimen size is 60xl20x10 mm3 with a notch 
of 10x2 mm2

. For this analysis, three meshes (872 
elements, 1206 elements, and 1664 elements) are 
used. For the three meshes, the lattice structure 
alignments are assigned randomly to the finite ele
ments. The results obtained from three meshes are 
compared to evaluate the effects of the mesh sizes 
and lattice structure alignment. 

Figure 9. (a) Three mesh discretizations for specimen with 
double notches 

The material parameters used in the analysis are 
as follows: modulus E = 21220 MPa, Poisson ratio v 
= 0.15, tensile strength ft = 4.16 Mpa. The crack 
zones of the three specimens obtained from the finite 
element analyses are shown in figure 9. Due to the 
effect of random lattice alignments, there are three 
different crack patterns: the up-curved crack, the 
straight crack and the s-shape crack. All three pat
terns resemble the observed crack patterns from dif
ferent specimens used in the experiments (see Shi et. 
al. 1999). The randomly aligned lattice structures re
flect indirectly the aggregate arrangements in a con
crete, thus it is reasonable that different crack paths 
are produced. 
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The measured vertical displacement of two points 
30 mm across the notches at the left and right edge 
of the specimen is plotted against load in figure 10. 
The experimental results are also compared with the 
computed results from the finite element analysis. 
According to figure 10, the finite element results 
show that different mesh discretizations have little 
influence upon the load-displacement behavior, al
though the predicted crack patterns are different. The 
elastic portions of the prediction are nearly identical. 
The predicted peak loads are very close. The 872-
element mesh predicts the smallest peak load, which 
is approximately 7 % less than the other two meshes. 
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Figure 10. Load-displacement curves of different mesh sizes 
for specimen with double notch 

Near the end of the softening portion of the 
stress-strain curve, the predicted results show more 
brittle behavior than the measured results. In 
the present analysis, the underlying lattice structure 
within an element is assumed to be uniform and 
regular, which does not model the detailed 
heterogeneous microstructures, for example, the 
formation of crack face bridges. By including the 
detailed microstructure, it is expected to improve the 
prediction results of the analysis. Unfortunately, a 
very fine mesh size is then necessary due to the 
small scale of the crack face bridges. To avoid the 
use of a very fine mesh, a more practical solution is 
to use a phenomenologically based non-linear frac
ture law for the lattice beam in stead of the purely 
brittle fracture criterion used in the present analysis 

5 SUMMARY AND CONCLUSION 

Based on a microstructural mechanics approach, a 
stress-strain relationship has been derived to model 
the development and propagation of fracture in con
crete, which is assumed to have an underlying mi
crostructure of lattice type. The derived stress-strain 
relationship is of Cosserat type. 



It has been shown in the previous studies that the 
Cosserat model can achieve the effect of mesh inde
pendence in a simple shear test. However, for the 
uniaxial tensile tests, Cosserate model does not pro
duce the mesh independence effects. In the present 
study, we show that by considering the underlying 
microstructure, even in a non-polar model, the finite 
element results show no sensitivity to the mesh size. 

However, the results of the present model are in
fluenced by the alignment of the underlying lattice 
structure because of the anisotropy in strength. This 
will lead inevitably that the crack pattern and peak 
strength are influenced by the microstructure. For 
simulating a real material, we assume that the lattice 
alignment in each element is random. For the three 
specimens in our analyses, we observed that ran
domly aligned lattice structures in three meshes pro
duce very similar results; the range of peak-load is 
approximately 7 %, and the computed three types of 
crack patterns are somewhat different in shape. The 
three crack patterns however resemble those ob
served in experimental results. It may be viewed that 
the alignment of a lattice structure reflects the ar
rangement of aggregates in concrete; each specimen 
is indeed somewhat different. 

Although this present model belongs to the cate
gory of damage models, it has a distinct behavior in 
that the cracks take place in a wide band as opposed 
to the natrnw crack band typically occurred in a row 
of elements in the usual damage models. Similar to 
rate-dependent materials, the present model shows 
independence on mesh size but a dependency on the 
initial conditions of heterogeneity of the specimen. 
The character of the underlying microstructure pri
marily causes the wider spread of crack band, which 
is capable of redistributing stress upon strain local
ization as opposed to usual damage models. 

REFERENCES 

Bazant, Z.P., Belytschko, T.and Chang, T.P. 1984. Continuum 
model for strain softening. Journal of Engineering Me
chanics llO: 1666-1692. 

de Borst, R. and Muhlhaus, H.B. 1992. Gradient-dependent 
plasticity: formulation and algorithmic aspects. Interna
tional Journal for Numerical Methods in Engineering 35: 
521-539. 

de Borst, R., Parnin, R.H. and Peerlings, R.HJ. and Sluys, L.J. 
1995. On gradients-enhanced damage and plasticity models 
for failure in quasi-brittle and frictional materials. Compu
tational Mechanics 17: 130-141. 

de Borst, R. and Sluys, L.J. 1991. Localization in a Cosserat 
continuum under static and loading conditions. Computer 
Methods in Applied Mechanics and Engineering 90: 805-
827. 

Cambou, H., Dubujet,P., Emeriault, F. and .Sidorott, F. 1995. 
Homogenization for granular materials. European Journal 
of Mechanics NSolids 14: 255-276. 

Chang, C. S. and Gao, J. 1996. Kinematics and static hypothe
sis for constitutive modeling of granulates considering par
ticle rotation. Acta Mechanics ll5: 213-229. 

34 

Chang, C. S., and Liao, C. 1990. Constitutive Relations for 
Particulate Medium with the Effect of Particle Rotation. 
International Journal of Solids and Structures 26(4): 
437-453. 

Chang, C. S. and Ma Lun. 1990. Modelling of Discrete Granu
lates as Micropolar Continuum. Journal of Engineering 
Mechanics, ASCE 116(12): 2703-2721. 

Chang, C. S., and Ma, L. 1991. A Micromechanical-Base Mi
cro-polar Theory for Deformation of Granular Solids. In
ternational Journal of Solids and Structures 28(1): pp. 
67-86. 

Chang, C. S. 1998. Modeling of Granular Materials with Intrin
sic Length Scale. Journal de Physique IV 8, Pr. 8: 71-78. 
EDP Sciences, de Courtaboeuf, France. 

Cosserat, E., and Cosserat, F. 1909. Theorie des corps Deform
ables. Hermann, Paries. 

Digby, P. J. 1981. The effective elastic moduli of porous 
granular rock. ASME, Journal of Applied Mechanics 48: 
803-808. 

Eringen, A. C. 1966. Linear theory of micropolar elasticity. J. 
Math. Mech. 15: 909-923. 

Liao, C.L., Chan, T.C., Suiker, A.SJ., and Chang, C.S. 2000. 
Pressure-dependent Elastic Moduli of Granular Assemblies. 
International Journal for Analytical and Numerical Meth
ods in Geomechanics 24: 265-279. 

van Mier, J.G.M. 1997. Fracture Processes of Concrete. CRC 
Press, Boca Raton (FL). 

Muhlhaus, H.B. and Vardolakis, L. 1987. The thickness of 
shear bands in granular materials. Geotechnique 37: 271-
283. 

Pijaudier-Cabot, G. and Bazant, Z.P. 1987. Nonlocal damage 
theory. Journal of Engineering Mechanics ll3: 1512-1533. 

Rots,J. G. 1988. Computational Modeling of Concrete Struc
ture. Ph.D Dissertation, Delft University of Technology. 

Schlangen, E. 1993. Experimental and Numerical Analysis of 
Fracture Processes in Concrete. Ph.D Dissertation, Delft 
University of Technology. 

Schlangen E., and Garboczi, EJ. 1997. Fracture Simulation of 
concrete using lattice models: computational aspects. Engi
neering Fracture Mechanics. 57(2/3): 319-332. 

Schlangen, E. and van Mier, J.G.M. 1992. Experimental and 
Numerical Analysis of the micromechanisms of fracture of 
cement-based composites. Ce1n.Conc. Comp. 14(2): 105-
ll8. 

Shi, C., van Dam, A.G., van Mier, J.G.M. and Sluys, L.J. 1999. 
Crack Interaction in concrete. Conference Proceedings of 
EUROMAT 99, Sep. 27-30. 

Sluys, L. J. 1992. Wave propagation, localisation and disper
sion in softening solids. Ph.D Dissertation, Delft University 
of Technology. 

Suiker, A.SJ., Chang, C.S., deBorst, R, and Esveld, C. 1999. 
Surface Waves in a Stratified Half Space with Enhanced 
Continuum Properties, Part-I - Formulation of the Bound
ary Value Problem. European Journal of Mechanics (Sol
ids) 18: 749-768. 

Walton, K. 1987. The effective elastic moduli of a random 
packing of spheres. Journal of Mechanics and Physics of 
Solids 35: 213-226. 


