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Effects of diffuse cracking around a main cohesive crack in diagonal split
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ABSTRACT: The cohesive crack model is a relatively simple and accurate means of describing fracture in con
crete and other quasibrittle materials. In its standard application, it is assumed that all the material surrounding 
the cohesive crack remains linear elastic. However, detailed analyses show that the tensile strength is exceeded 
within the supposedly elastic region, which means that secondary cracking must occur. This paper briefly sum
marizes the basic features of a simple extension of the cohesive crack to include secondary cracking. It also 
discusses previous computations for unnotched beams subjected to three-point-bend beams, and explores the 
effect of secondary cracking on the results of the diagonal splitting test (Brazilian test). Various specimen sizes 
and two load-bearing-strip widths are considered. In particular, the influence of the peak load and the map of 
secondary crack density are analyzed. 

INTRODUCTION 

The cohesive crack model, first proposed by Baren
blatt ( 1962) and Dugdale ( 1960), in very specific con
texts, was later extended by Hillerborg ( 1976) to be
come a general approach to the fracture of concrete 
in tension. The model has proved to be relatively sim
ple and efficient to describe the fracture of concrete 
and other quasibrittle materials, at least in the cases 
were failure occurs through a single crack or a set of 
discrete cracks. 

One of the simplifications usually included in the 
cohesive crack model is that all nonlinear behavior 
is localized into the cohesive zone while the mate
rial surrounding the crack remains linear elastic. Al
though this hypothesis is not conceptually necessary 
(Elices & Planas 1989; Bazant & Planas 1998), it 
makes much simpler both theoretical and numerical 
analyses of cohesive crack problems and became a 
basic ingredient of the standard formulation. 

A limitation of the standard formulation of the co
hesive crack model is that it leads to solutions that 
contradict one of the basic hypotheses of the model, 
namely, that a cohesive crack forms in at a for
merly elastic point when the stress reaches the tensile 
strength f 1• Indeed, in most of the solutions of single 
cohesive crack problems, more or less large regions 
have been found in the supposedly elastic bulk mate
rial where the tensile strength is exceeded. For exam
ple, in Figure I, a small but finite region over which 
the largest principal stress exceeds the tensile strength 
is found around the cohesive crack tip in a three-point-
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bend specimen in which a cohesive crack is made to 
grow in mode I from a relatively deep notch (Guinea 
1990; Planas et al. 1992). 
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Figure I: Maximum load isostress lines for first and 
third principal stresses (Planas et al., 1993). 

For unnotched three-point-bend specimens it has 
been long foreshadowed that the standard solution in
volved stresses exceeding the tensile strength over al
legedly elastic regions. This point was quantitatively 
demonstrated by Olsen ( 1994), some of whose results 
are compiled in Figure 2. It shows a large area over 
which the tensile strength is exceeded. 
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Figure 2: Isolines of horizontal normal stress in a 
three-point-bend unnotched beam for a/ D = 0.25 rel
ative depth of the cohesive zone. The tensile strength 
f1 is exceeded over the gray shadowed regions (Olsen, 
1994). 

The foregoing facts imply the following three con
sequences: 

Ell The standard approach to the cohesive crack 
model leads to inconsistent solutions whose ac
curacy needs to be assessed trough a higher level 
model. 

Ell According to the cohesive crack model itself, 
secondary cracking must occur in the regions 
where the tensile strength is exceeded. 

Ell A higher-order model is needed that, preserv
ing the main concepts of the cohesive crack 
model, relieve the inconsistency and adequately 
describe the secondary cracking. 

This work presents one of the many possible higher 
order models and describes the results of its applica
tion to the diagonal splitting test. 

2 DIFFUSE CRACK MODEL 

The diffuse crack model developed in this work is 
a three-dimensional generalization of the unidimen
sional model proposed by Planas & El ices ( 1993) 
to describe shrinkage microcracking in concrete. Its 
starting point is the cohesive crack model which as
sumes the development of a crack perpendicular to the 
maximum principal stress when this reaches the ten
sile strength f 1• After the cohesive crack has formed, 
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Figure 3: Generic softening stress-crack opening 
curve. 

the stress transferred across its faces is given, for 
monotonic mode I crack opening, by a unique func
tion of the crack opening w: 

a-= f(w) (1) 

The f (w) function is known as the softening func
tion. Figure 3 shows the shape of this function for 
concrete. 

The diffuse crack model adds to the basic cohe
sive crack model some complementary assumptions 
regarding crack kinematics. For simplicity, we first 
describe the uniaxial model and then give the gener
alization to three dimensions. 

2.1 Uniaxial model 

The core idea in the uniaxial model is that diffuse 
cracking can be described as a set of parallel cohe
sive cracks, spaced a relatively small distance s, in an 
otherwise elastic bar. If the cracks are close enough, 
we can describe their macroscopic effect as a dis
tributed inelastic strain EP given by 
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EP= -

s 
(2) 

where w is the average crack opening. The uniaxial 
stress transferred through the crack set for monotonic 
inelastic stretching, directly derives from the soften
ing curve (Eq. I) as 

(3) 

where .ls (cP) is a stress-inelastic curve which dis
plays softening. If the crack spacing tends to zero, the 
softening rate also tends to vanish. Then the model 
displays a perfectly plastic behavior. If the first stretch 
of the softening curve is approximately linear (Fig. 3) 
the stress drop 6..a- is given by 

(4) 



For infinitely close cracks, s ----t 0 and 6.CJ ----t 0. 
Therefore, as long as monotonic stretching is con
cerned, the behavior tends to be perfectly plastic as 
the crack spacing is reduced. 

The unloading behavior is also needed to complete 
the model because a main cohesive crack may develop 
and, as it grows, the zone of diffuse cracking may un
load. Planas & El ices ( 1993), based of the results of 
other authors (Reinhardt 1984; Yankelevsky & Rein
hardt 1987), justified that when a crack gets slightly 
open it does not close again upon unloading. We adopt 
here this result and assume that the inelastic strain cP 
is fully irrecoverable. This is formally identical to an 
elastic-plastic stress-strain behavior; perfectly plastic 
ifs = 0 and plastic with softening ifs -::f. 0. 

2.2 Triaxial model 

The simplest way to generalize the former uniaxial 
model to three dimensions is to assume an elastoplas
tic behavior with Rankine criterion and associative 
flow rule. The corresponding equations are 

(5) 

(6) 

(7) 

where er = stress tensor; E = fourth-order elastic ten
sor; e: = strain tensor; e:P inelastic strain tensor; 
CJ, maximum principal stress; €P = equivalent in
elastic strain; and P, = projector of the stress tensor 
on the direction of its first principal stress. The func
tion f.s (E'P) is identical to that defined for the uniaxial 
model by Equation (3 ). 

The equivalent inelastic strain €P gives global in
formation about the softening process in each point 
of the bulk material. It characterizes the maximum 
crack opening average of every crack developed in a 
point and does not take into account the orientation of 
each crack. The equivalent inelastic strain equals the 
uniaxial inelastic strain if the unidimensional case is 
considered, as it is followed from Equation (7). 

3 NUMERICAL ANALYSIS 

This analysis shows the influence of diffuse cracking 
on the predicted behavior of three point bend and di
agonal splitting test specimens. The numerical anal
ysis makes use of ABAQUS, a finite elements com
mercial code. 

The main crack is simulated by softening spring el
ements located along the central cross section. The 
diffuse cracking is modeled defining an elastoplastic 
material behavior (according to former section) for 
the bulk material. Nor ABAQUS nor any other com-
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Figure 4: Softening curve used in calculations (Rocco 
1996). 

mercial finite element code support any material be
haviour with Rankine first principal stress yield crite
rion and associative flow rule. That's why it is neces
sary to develop an user material subroutine (UMAT in 
ABAQUS nomenclature) to make use of this kind of 
material. 

The subroutine implements a two dimensional 
plane stress model. The plastic softening function 
fs (€P) is a polygonal derived from the cohesive soft
ening function and the value of the average distance 
between consecutive diffuse cracks (Eq. 3). 

The softening curve used in all the calculations 
(Fig. 4) corresponds to a microconcrete tested in the 
authors laboratory (Rocco 1996). 

3.1 Three point bend beams 
The finite element mesh models the right half of an 
unnotched beam. The span to depth ratio is four. The 
calculations consider five beam depths, scaled accord
ing to the ratios 1 : 2 : 4 : 8 : 16. Detailed information 
about the mesh can be found in Arbilla et al. (Arbilla 
et al. 2000). 

3.2 Diagonal splitting test specimens 
The finite element mesh, a square pattern made up by 
64 x 64 elements, models only the upper right quarter 
of the specimen because of the symmetry conditions 
of the test. The side of each element is D /128, where 
D = test specimen height. 

The calculations consider six sizes of specimens 
and two widths of bearing strips. The sizes are scaled 
according to the ratios 1 : 2 : 4 : 8 : 16 : 32. 

3.3 Calculations 
Three different calculations are performed for each 
unnotched three-point-bend beam: 

• Standard cohesive crack model: main cohesive 
crack running through elastic material. 



Nonsoftening diffuse cracking: main cohesive 
crack running through a material with infinitely 
close diffuse cracks( crack spacings = 0). 

• Softening diffuse cracking: main cohesive crack 
running trough a material with diffuse softening 
cracks corresponding to an assumed minimum 
crack spacing identical to the finite element size. 
This means that only one crack can develop in 
each element. 

Only the first and the third calculations are per
formed for each splitting test specimen because we 
are looking for secondary localized cracks. 

4 RESULTS 

The results are shown in dimensionless form, so they 
are useful not only for the particular microconcrete 
considered here, but also for any other material with 
a softening function of identical shape. 

Loads are referred to the nominal peak load for 
elastic brittle-behavior. Geometric dimensions are re
ferred to the characteristic length of the microconcrete 
lc1i, defined as 

EGF 
lc1i= -j2 

t. 
(8) 

where E = elastic modulus and G F = fracture en
ergy. The value of the characteristic length of the mi
croconcrete is Zeh = 122 mm, whereas the value of an 
ordinary concrete Zeh :::::;; 300 mm. 

Although equivalent inelastic strain is already a di
mensionless variable, it is referred to the elastic strain 
corresponding to the tensile strength ft. 

4.1 U1111otched three-point-bend beams 
One of the main results is that the diffuse crack model 
relieves the overstress appearing in the standard cohe
sive crack approach, so the stress nowhere exceeds the 
tensile strength. Of course, this is done at the expenses 
of inelastic strains appearing in the material. The in
elastic strain concentrates in the small dark rectangle 
shown in Figure 5. The inelastic strain distribution in
side that rectangle is shown in Figure 6 for various 
cases. For nonsoftening diffuse cracking, the inelas
tic strain is smoothly distributed, and more intense for 
small sizes (Fig. 6 a) than for large sizes (Fig. 6 b ). For 
softening diffuse cracking the inelastic strain is again 
more intense for small size (Fig. 6 c) than for large 
sizes (Fig. 6 d). However, the inelastic strain distri
bution is less smooth and localization bands may be 
identified for small sizes (Fig. 6 c). This is the main 
difference between the two diffuse crack models. 

The first consequence of the localization is that the 
maximum inelastic strain is about 5 times larger for 
the softening diffuse cracks. Although the existence 
of localization bands is numerically significant, its ef
fect on experimental results is nil. In fact, the soften-
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Figure 5: Right half of the specimen; the dark rect
angle shows the zone where diffuse cracking takes 
place. All dimensions are referred to the beam depth. 
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Figure 7: Peak load calculated with the cohesive crack 
model and the diffuse crack model and experimental 
results from Rocco( 1996) for unnotched three-point
bend beams. 

ing associated to the worst strain localization is less 
than 0.43 of ft for all the investigated sizes. The cor
responding (maximum) crack opening is w :::::;; 0.1 pm 
for a typical concrete with G F = 100 N / m and f~ = 
3 MPa. This means that the localization bands, which 
could be seen as isolated cracks, are virtually impos
sible to detect experimentally since their opening is in 
the submicron range. 

Finally Figure 7 shows the comparison between 
numerical calculations and experimental results from 
Rocco ( 1996). Apparently, the effect of including dif
fuse cracking in marginal. In particular, the influence 
on the peak load never exceeds 1.2% of the value 
computed with the standard cohesive crack model. 

4.2 Splitti11g test specimens 

Figure 8 shows the calculated values of the peak load 
and the experimental results of Rocco ( 1999). Both 
numerical models give very similar results. There is 
only a small difference when D / lch = 0.15; the peak 
load is slightly lower for the diffuse crack model. The 
difference between the predictions of the models is 
greater for b/ D = 0.16 than for b/ D = 0.08. 

The numerical results are in good agreement with 
the experimental results. The peak load predicted for 
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Figure 6: Inelastic strain distributions for diffuse cracking on unnotched three-point-bend specimens. The figure 
shows the dark zone of figure 5 magnified. 
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Figure 8: Peak load calculated with the cohesive crack 
model and the diffuse crack model and experimental 
results from Rocco( 1996) for splitting test specimens: 
(a) b/ D = 0.08; and (b) b/ D = 0.16. 

D/lch = 0.15 and b/ D = 0.16 using the diffuse crack 
model is closer to the mean experimental peak load 
than the predicted using the standard cohesive model. 

In view of these results, it seems that the diffuse 
cracking has a very little effect on the macroscopic 
response of the concrete splitting test specimens. 

Figure 9 shows the distribution of diffuse cracking 
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on three different specimen sizes, including the small
est one, and the two widths of the bearing strip. 

Diffuse cracking appears on two separated zones: 
(I) a narrow band along the main cohesive crack, 
and (2) a thin region on the top, near the end of the 
bearing strip. The latter zone grows in relative ex
tent as the size of the specimen decreases. Only for 
D / lch = 0.15, the smallest size of specimen, the dif
fuse cracking is more intense here than near the main 
cohesive crack. 

The width of material affected near the main co
hesive crack is very narrow. The exception is again 
the smallest specimen, where the volume of affected 
bulk material is important (relative to the volume of 
the specimen). 

The width of the bearing strip when D /Zeh 2': 0.30 
has little influence on the process. When D /Zeh = 
0.15, the wider the bearing strip, the smaller the vol
ume of affected bulk material near the main cohesive 
crack. 

At any rate, the extent of diffuse cracking is very 
small in all cases, which explains why diffuse crack
ing does not substantially affect macroscopic re
sults, compared to the standard cohesive crack model, 
which neglects secondary cracking altogether. 

5 CONCLUSIONS 

1. Both versions of the diffuse crack model (non
softening and softening) are confirmed to be ad
equate to relieve the inconsistency of the stan
dard cohesive crack model and to describe sec
ondary cracking that must necessarily occur in 
specimens and structures failing through a single 
main crack. 

2. For unnotched three-point-bend specimens, the 
diffuse cracking appears also on two wing
shaped zones on both sides of the specimen. For 
diagonal splitting specimens the diffuse crack
ing keeps distributed on two narrow strips at both 
sides of the main crack, at least until peak load is 
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Figure 9: Inelastic strain distributions for diffuse cracking on splitting test specimens. Top row: b/D = 0.08; 
bottom row: b/D = 0.10 

reached. A small zone of secondary cracking is 
detected at both sides of the load-bearing strips. 

3. For unnotched three-point bend specimens a nu
merical difference appears between the diffuse 
cracking patterns according that a model with or 
without softening is used: numerical localization 
of diffuse cracking is seen when the softening 
model is used (although the actual localization is 
not measurable since it would correspond to an 
array of discrete microcracks with openings less 
than 0.1 microns). No localization has been de
tected for the diagonal-splitting test. 

4. The splitting test is appropriate to ascertain the 
tensile strength of concrete if appropriate dimen
sions for specimens and bearing strips are se
lected. The propagation of the main cohesive 
crack is the key process and the importance of 
secondary cracking is negligible. 

5. Both for three-point-bend unnotched beams and 
for diagonal-splitting specimens, the mechani
cal response is affected only slightly by the sec
ondary cracking. The standard model (which is 
simpler and faster to use) can thus be used for 
most practical purposes 
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