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ABSTRACT: A new thermodynamic framework for microplane formulations is summarized. A free-energy 
potential is defined at the microplane level, such that its integral over all orientations gives the standard 
macroscopic free energy. From this simple assumption it is possible to derive in a unique way consistent 
microplane stresses and their corresponding integral relation to the macroscopic stress tensor. These new 
relations are discussed and compared to the traditional approach to microplane model using intuitively defined 
stresses and the PVW. 

1 INTRODUCTION 

Since it was first proposed in 1983 by Bafant and Oh, 
the microplane approach has become progressively 
more popular for the description of the constitutive 
behavior of a number of engineering materials such 
as concrete, rock, ceramics, or ice (Bafant and Gam­
barova, 1984; Bafant and Oh, 1985; Bafant and Prat, 
1987; Bafant and Prat, 1988a; Bafant and Prat, 1988b; 
Carol et al., 1991; Carol et al., 1992; Cofer, 1992; 
Cofer et al., 1992; Ozbolt and Bafant, 1992; Cofer 
and Cohut, 1994; Bafant et al., 1996a; Bafant et al., 
1996b; Fichant, 1996; Ozbolt and Bafant, 1996; Kuhl 
et al., 1998; Bafant et al., 2000a, Bafant et al., 2000b). 

Microplane constitutive formulations are based on 
the assumption that intrinsic material behavior may 
be defined as a relation between normal and shear 
components of stress and strain on microplanes of 
various orientations, rather than between stress and 
strain tensors and their invariants. These microplane 
stresses are then integrated over all possible directions 
in space. This idea is actually not new. The classi­
cal elasto-plastic failure envelopes such as Tresca and 
Mohr-Coulomb may be also derived from the idea of a 
limit a-r condition for a generic plane (Mohr, 1900). 
The slip theory of plasticity (Taylor, 1938; Batdorf 
and Budiansky, 1949) and the viscoplastic multilami­
nate model for fractured rocks and soils (Zienkiewicz 
and Pantle, 1977; Pantle and Sharma, 1983) were 
also based on similar concepts. The main difference 
between those formulations and the traditional mi­
croplane model is the kinematic constraint assumed 

(previous formulation were in general based on the 
static constraint), and the principle of virtual work 
(PVW) applied to obtain the corresponding integral 
micro-macro relation for stresses. This is well doc­
umented in the literature, see for instance Carol and 
Bafant (1997). 

However, although successfully implemented and 
extensively verified with experimental results (Bafant 
and Prat, 1988b; Carol et al., 1992, Bafant et al., 
1996b, Bafant et al., 2000a), the traditional mi­
croplane models were to some extent based on intu­
itive arguments, and their thermodynamic consistency 
could not be guaranteed in all loading situations. The 
lack of full thermodynamic consistency (actually com­
mon to many constitutive models used in engineering 
practice) seems to have had little influence on the rep­
resentation of available experimental data, given the 
excellent fits obtained under numerous different load­
ing conditions. But no doubt, an approach in which 
conjugacy of variables and thermodynamical consis­
tency is assured should always be preferable. 

A first simple version of such consistent approach 
has recently been proposed (Carol et al., 2001; Kuhl 
et al., 2001) and is summarized and discussed in the 
present paper. 
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2 TRADITIONALMICROPLANE FORMULATION 

The orientation of each microplane is described by the 
unit normal vector, n. The deformation and stresses 
on the microplane are characterized by the normal and 



shear strains, EN, Er (with Cartesian components Err), 
and the corresponding microplane tractions, aN, and 
Ur (with Cartesian components arr). With the excep­
tion of the earliest formulations (Bafant and Oh, 1983; 
Bafant and Gambarova, 1984), which worked very 
well for distributed multidirectional tensile cracking 
but could not cope with the nonlinearity under com­
pression and shear, most versions of the model assume 
the normal components to be further split into their 
volumetric and deviatoric parts, Ev and ED (or av and 
a D). The kinematic constraint means that the normal 
and shear strains on the microplane are assumed equal 
to the projections of the macroscopic strain tensor Eij 
(as opposite to a static constraint in previous models 
based on similar ideas): 

Oij 
(or, with split, Ev = 3Eij 

ED= EN - EV) 

(la,b,c,d) 

where the Latin lowercase subscripts refer to Carte­
sian coordinates Xi (i=l,2,3), and subscript repetition 
implies summation. The same relations may be ex­
pressed in compact notation as: 

EN = N: E (or, with split, Ev = v: E 

ED =D: E) 

Er= T: E 
(2a,b,c,d) 

where the projection tensors N, V, D (of second order) 
and T (of third order) have the Cartesian components: 

Oij v .. -_ 
I) - 3 ' 

(3a,b,c,d) 

Stress quantities aN, av and ur are introduced for 
each microplane, as well as the corresponding material 
laws in the form of functions 

(or, with split, av = Fv(Ev) 

av = Fv(Ev)) 

(4a,b,c,d) 

With the kinematic constraint and general microplane 
material laws, equilibrium between the macro- and 
micro-stresses is not possible in a 'strong' sense (i.e. 
the static constraint dual to (1) is not satisfied). The 
weak form of micro-macro equilibrium equations can 
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be constructed using the principle of virtual work, 

4
rr u: OE =2 r [aNOEN + Ur·OEr]dQ 
3 Jn (5) 

where Q is the surface of a unit hemisphere (repre­
senting the set of all possible microplane orientations). 
Substituting OEN =N: OE and OEr = T: OE and taking 
into account the independence of individual compo­
nents of the (symmetric) virtual strain tensor, we get 
the integral micro-macro equilibrium condition 

u = 2- r aNNdQ+ 2- r Ur·TdQ (6) 
2rr Jn 2n Jn 

or, in index notation 

aij = 2~ In aNninj dQ+ 

3 1 arr + - -[niOrj + njoriJ dQ 
2rr n 2 

(7) 

(when rewriting the second integral, the last term in 
the definition of T (3d) has been omitted because ur 
is a vector contained in the microplane and therefore 

arrnr = 0). 
In previous models with volumetric-deviatoric split 

similar to (Bafant and Prat, 1988a), aN in the first 
term of the previous equation was directly replaced by 
av +av. Since, according to (4b), volumetric stress 
av depends only on Ev and therefore is the same for 
all microplanes, (6) was written as 

u=avl+2_ { avNdQ.+2_ { ur·TdQ (8) 
2rr Jn 2n Jn 

where/= 3V is the second-order identity tensor (Kro­
necker delta). 

3 NEW THERMODYNAMIC DERIVATION 

The first standard assumption in a thermodynamically 
consistent constitutive framework is the existence of 
a free-energy potential per unit mass of material in 
isothermal conditions, 'Pmac(E, ~),where~ is a given 
set of internal variables that fully define the state 
of the material at any point of the loading history. 
The fundamental assumption for the new, thermody­
namically consistent microplane approach is that the 
macroscopic free energy may be written as the integral 
of some free energy defined at the microplane level, 
u1mic. 
TQ • 

where tE is the vector collecting the normal and shear 
strain components for the microplane with normal n. 



If the material density is po, it is a standard pro­
cedure (Coleman and Gurtin, 1967; Ilankamban and 
Krajcinovic, 1987) to obtain the stress conjugate to E 

as the derivative of the free energy per unit volume: 

B [po 'f'nwc] 
<T = 

BE 
(10) 

In our case, this formula may be applied to Eqn. (9). 
Using the chain rule of differentiation on the right­
hand side, one obtains: 

u =2_ 1 B[po'Pnic] ctn= 
2rc n BE 

=2_ 1 B[po'Pnic]. BtE ctn 
2rc n BtE BE 

(lla,b) 

Assuming that the strain components on the mi­
croplane are EN, and ET, and that they are related to 
the macroscopic strain via the kinematic constraint 
given by equations (la,d) or (2a,d), we may expand 
the two terms of the product inside the integral, obtain 
the strain derivatives and express: 

u =- n Nd.Q+ 
3 1 B[po'f'mic] 

2rc n BEN 

3 1 B [p 'f'mic] +- o n ·Td.Q 
2rc n BET 

(12) 

This equation turns out to be equivalent to (6) if we 
define 

B[po'Pnic] 
O'N=----

BEN 
B[po'Pnic] 

<TT=----
BET 

(13a,b) 

This is actually a consistent definition of the mi­
croplane stresses O'N and <TT as the work-conjugate 
quantities of the microplane strains EN and ET. 

If, on the other hand, we consider the formulation 
with split, in which the microplane strains are Ev, ED 

and ET, developing ( 11 b) leads to: 

u = 3 f O'vV ctn+2-1 O'DD ctn+ 
2rc Jn 2rc n (l4) 

+ 2_ { <TT·Td.Q 
2rc Jn 

with the consistent microplane stresses O'V, O'D and 
u T defined as: 

B[po'Pnic] 
O'v=---­

BEv 
B[po'Pnic] 

O'D = 
BED 

B[po'Pnic] 
<TT= BEr 

(15a,b,c) 

521 

4 DISCUSSION 

Formulas (12) and (14) obtained by differentiation of 
the free energy may now be compared to their coun­
terparts in the traditional microplane formulation, (6) 
and (8). 

For the formulation without volumetric-deviatoric 
split, the thermodynamic derivation leads to an inte­
gral equation (12) which is identical to the one ob­
tained in the traditional formulation (6). This means 
that, in spite of being derived in an intuitive manner, 
the traditional microplanes models without split do 
not seem to contradict thermodynamic principles. In 
particular, the microplane stresses defined in that way 
O'N, u T, indeed correspond to the conjugate quantities 
to their strain counterparts EN and ET. 

In contrast, for the formulation with split of nor­
mal components, the two derivations lead to different 
expressions. Comparing equations (8) and (14), there 
are two differences: 

(a) the simple term O'V I in (8) is replaced by the 
integral involving the volumetric term (first on 
the right-hand side) in (14), and 

(b) the factor N multiplying O'D in the deviatoric 
integral of (8) is replaced by D=N-V in (14). 

The first difference (a) only vanishes if O'V may be 
assumed to be a function of Ev but not of ED and ET. 
In that case, O'V would be the same for all microplanes 
and could be taken out of the integral in (14), because 
of the simple relation 

(16) 

Since O'V = B[po'Pnic]/Bcv, (Eqn 15a), having O'V in­
dependent of ED and ET implies that the mixed deriv­
atives B2[po'f'nic]/BcvBED and B2[po'f'nic]/BcvBET 
vanish, but then (because of the remaining defini­
tions 15b,c) neither O'D nor UT can depend on cv 
either. In this situation, the microplane free energy 
must have the following decoupled form: 

'Pnic(cv, ED, ET,~) ='¥'{1ic(cv, ~)+ 

+ '¥21ic(ED, ET,~) 
(17) 

Note that the very assumption of a microplane free en­
ergy 'Pnic which depends on the strains on the same 
microplane exclusively, may be in itself quite restric­
tive. For instance, the latest practical formulation for 
concrete M4 (Bafant et al., 2000b ), and also its prede­
cessor M3 (Bafant et al., 1996a), use a procedure to 
calculate O'V and O'D on each microplane which makes 



them actually dependent on deviatoric strains ED on 
all other microplanes. That was a way to combine the 
advantages of the model without split in tension, with 
those of the split in compression, and allowed a much 
better fit of experimental data for concrete. That same 
feature, however, makes those formulations more gen­
eral than the thermodynamic framework considered in 
this paper, and for them the question of work conju­
gacy must be addressed in a different way (Bafant 
et al., 2000b). 

In contrast, earlier versions of the model did con­
form to assumption (9), and most of them actually also 
to (17). This might not be apparent in some cases, in 
which the microplane law for the shear components 
involved some form of dependence on the volumet­
ric strain in order to introduce the frictional effect of 
hydrostatic pressure on the deviatoric behavior. Nev­
ertheless, the nature of that dependence is that of a 
shear yield limit that depends on normal stress, while 
unloading properties (which relate to stored energy) 
remain uncoupled. For this reason, this effect may be 
in general introduced via the history variables ~, with 
the practical consequence that, for all those formula­
tions included in the framework, difference (a) is only 
apparent and does not imply real inconsistency. 

More essential, however, is the difference (b). In 
effect, by developing the second integral in ( 14) and 
because V is the same for all microplanes, we can 
write 

The second term on the right-hand side vanishes only if 
the average deviatoric stress is zero, and this is actually 
only satisfied for a very narrow class of models. The 
most important member of this class is isotropic linear 
elasticity, which is described by the microplane free­
energy potential 

where K is the macroscopic bulk modulus and G is the 
macroscopic shear modulus of elasticity. The mean 
value of ED over all the microplanes is always zero, 
and as aD = B[po'I'(lic]/BED =2GED, the mean value 
of aD is zero as well. Note, however, that as soon as 
any nonlinear behavior is considered this condition is 
immediately violated except for very few special cases 
(Carol et al., 2001). 

With regard to the traditional formulation of mi­
croplane model, difference (b) may be interpreted in 
the sense that, while total normal stress aN was always 
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conjugate to EN, its volumetric and deviatoric parts av 
and aD were not necessarily one-to-one conjugates 
to their corresponding microplane strains Ev and ED. 
This could result in spurious dissipation/generation 
of energy under certain load cycles, as shown in the 
example of section 5. 

It is finally noted that the thermodynamically con­
sistent formula (14) may also be derived from the 
PVW but only if the contribution of the normal mi­
croplane stresses to the virtual work in (5) is rewritten 
as j 0 [av 8Ev + aD 8ED]dn. 

5 EXAMPLE OF SPURIOUS DISSIPATION 

To illustrate the problem, consider a model with mi­
croplane laws in secant format proposed in (Bafant 
and Prat, l 988a), which was developed later in a dam­
age format in (Kuhl et al., 1998). In such formulation, 
the microplane constitutive equations read 

av= [1-dv] 3K Ev 

aD = [1-dD] 2G ED 

Uy= [l-dy] 2G ET 

(20a,b,c) 

where dv, dD and dr are scalar damage parameters, 
initially set to zero. The simplest assumption is that 
dv depends only on the history of sv, dD depends 
only on the history of ED, and dr only on the history of 
IE r I. Parameter d v is then the same on all microplanes 
while dD and dr in general vary as functions of the 
microplane orientation. 

Substituting the microplane laws into the tradi­
tional stress-evaluation formula (8) and using (2), we 
obtain: 

3Gi u =[l-dv]3Klsv + - [1-dD]NED ctn+ 
n n 

3G i T +- [1-dr]T ·Er an= 
n n 

=([1-dv]Kl®l+ 
3
: L[l-dD]N®Ddn+ 

3G { T ) --;- ln[l-dr]T ·Tdn : E = 

=E:E 
(2la,b,c) 

where TT satisfies T'&,. = Trij, and 

3Gi E =[1-dv]Kl@l + - [1-dD]N@D an+ 
n n 

3G i T +- [1-dr]T ·Tdn 
n n 

(22) 
is the secant macroscopic stiffness tensor. 



Due to the presence of the term including N ® D 
the stiffness tensor E in general does not exhibit major 
symmetry. Only in the case of isotropic damage, in 
which 1-dD is the same for all microplanes, we can 
take that term out of the integral and taking advantage 
of the equation (Carol et al., 2001) 

l N®DdO. = l D®DdQ. (23) 

recover a symmetric secant stiffness. 
The lack of major symmetry would not necessarily 

be in contradiction to the laws of thermodynamics if it 
were caused by frictional phenomena involving a uni­
lateral condition. However, this is not the case here. 
During unloading and reloading below the maximal 
previously reached strain level, the damage parame­
ters remain constant and the material responds as a 
linear elastic one with stiffness E. The lack of ma­
jor symmetry then implies that no elastic potential 
can exist, and the total work over a closed cycle is 
in general not zero. For certain loading cycles, en­
ergy is consumed, and for others it is extracted from 
the material spuriously (without changing the internal 
variables). A complete example of a specific loading 
cycle generating/dissipating energy (depending on the 
load direction) can be found in (Carol et al., 2001). 

6 CONCLUDING REMARKS 

A new, simple, thermodynamically-consistent frame­
work for the formulation of microplane models has 
been described. The main assumption is that the 
macroscopic free energy may be obtained as the inte­
gral over all microplane orientations of a microplane 
free energy function, which depends on the micropla­
ne strains and the internal variables. This assumption 
does not contradict most of the early versions of mi­
croplane models for concrete with and without split of 
normal components (Ml and M2), but leaves out the 
more recent M3 and M4 models, for which the free 
energy of the various microplanes may not be written 
in a decoupled form. 

The new formulation leads to a consistent definition 
of the microplane stresses which are conjugate to the 
microplane strains, and to the integral form of the 
micro-macro equilibrium equation which applies to 
those stresses. 

A comparison with the previous microplane mod­
els not precluded by the new formulation leads to the 
conclusion that, while the earliest model without split 
(Ml) was correct, the following version of microplane 
model with the split of normal components (M2) can­
not be guaranteed to be thermodynamically consistent. 

In that case, microplane stresses av and O'D are not 
work-conjugates to their strain counterparts Ev and 
ED. The integral micro-macro relation for stresses 
does not coincide either with the one obtained from 
the thermodynamic derivation, and the model cannot 
be guaranteed to be free of spurious dissipation or 
generation of energy. 

Further developements of the proposed framework 
by applying standard concepts such as the Coleman 
method and Clausius-Duhem inequality at both mi­
croplane and macroscopic levels, as well as some sim­
ple example models incorporating damage and plas­
ticity concepts may be found in (Kuhl et al., 2001). 
Exploitation of this new framework for a general for­
mulation of microplane models at finite strain is the 
object of a current research effort by the authors. 
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