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ABSTRACT: If the structure fails at fracture initiation from a smooth surface, and if the geometry is positive 
and the structure size tends to infinity, the Weibull-type size effect must be exactly followed, even if the material 
is quasibrittle. A nonlocal generalization of Weibull theory that satisfies this condition is presented. It predicts 
the probability of failure of unnotched structures that reach the maximum load before a large crack forms, as 
is typical of the test of modulus of rupture. The probability of failW:e at a material point is assume~ to. be 
a power function of the average strain in the neighborhood of that pomt. The recent nonlocal generahzat1on 
of Weibull theory is reviewed and shown to exhibit the correct large-size properties. The size effect on the 
modulus of rupture (bending strength) and its statistics are analyzed and comparisons with extensive test data 
are presented. · 

INTRODUCTION 

Prior to the I 990's, it was commonplace in civil engi­
neering design to assume the maximum load of struc­
tures to be governed by the strength of the material. 
Only sometimes the possibility of a purely statistical, 
classical size effect of Weibull ( 1939) was admitted. 
But no attention was paid to the possibility of a de­
terministic sire effect. As became clear in the early 
1980's, the size effect on the nominal strength of qua­
si brittle structures is in most instances predominantly 
deterministic. It is caused by stress redistributions and 
energy release associated with either the growth of 
a large fracture process zone (FPZ) or a long stable 
crack (Baiant 1984, Bafant & Chen 1997, Bafant & 
Planas 1998). More than two decades ago, the finite 
element calculations with the cohesive (or fictitious) 
crack model by Hillerborg et al. (1976) revealed the 
presence of a strong deterministic sire effect engen­
dered by stress redistribution within the cross sec­
tion due to softening inelastic response of the mate­
rial in a boundary layer of cracking near the tensile 
face. At the same time, the necessity of a determin­
istic size effect was indicated by energy analysis of 
stability of softening damage against localization and 
spontaneous propagation (Bafant 1976, 1984). A de­
tailed finite element analysis of the deterministic size 
effect on the modulus of rupture was carried out, with 
the cohesive crack model, by Petersson (1981). He 
numerically demonstrated that the deterministic sire 
effect curve terminates with a horizontal asymptote. 
But he also observed that, for very deep beams, for 
which the deterministic size effect asymptotically dis-

appears, the classical Weibull-type statistical size ef­
fect must take over. 

It has been argued that a sound probabilistic theory 
of quasibrittle failure must asymptotically approach 
the Weibull theory with the weakest link model (ex­
treme value statistics) in the case that the ratio of 
structure sire D to the characteristic length l of the 
material tends to oo. The stochastic finite element 
method (SFEM), in which the role of l is played by 
the autocorrelation length of the random field of ma­
terial strength, does not satisfy this basic requirement, 
while the proposed theory does. 

Since concrete is a highly random material, the 
statistical size effect must of course get manifested 
in some way. A recent study of Baiant & Novak 
(2000a,b) resulted in a statistical structural analysis 
model that takes into account the post-peak strain 
softening of the material and calculates the failure 
probability from the redistributed stress field using 
the nonlocal Weibull approach of Bafant & Xi 
(1991). A simple formula for the size effect on mod· 
ulus of rupture incorporating both the deterministic 
energetic and the statistical causes has been presented 
by Bafant & Novak (2000c). This paper presents the 
main results of these studies. 

2 NONLOCAL WEIBULL THEORY 

The Weibull integral for probability P1 of structural 
failure (Bal.ant & Planas 1998, ch. 12) was refor­
mulated by Bafant & Novak (2000a.b} in a nonlo­
cal form. In this reformulation, the local stresses are 
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replaced by the nonlocal (spatially averaged) strains 
multiplied by the modulus of elasticity, as proposed 
by Bazant & Xi (1991 ). Then the multi-dimensional 
generalization of Weibull integral may be written as: 

P1 = 1- exp {- { f, /a;(:r:)Jm dV(:r:)} (I) 
iv i= I \ a0 V. 

where n = number of dimensions (1, 2 or 3), a0 = 
Weibull scaling parameter, m = Weibull modulus, V, 
= representative volume of material (having the di­
mension of material length), <7; = principal stresses 
(i = 1, ... n), and an overbar denotes nonlocal averag­
ing. The failure probability now depends no longer 
on the local stresses <7; (:r:) but on the nonlocal stresses 
a;(:r:) which are the results of some form of spatial av­
eraging of strains; for details see BaZarlt & Xi (1991), 
Bcdant & Planas (1998, ch. 12), and BaZarlt & NovAI< 
(2000a,b). In the case of an unreinforced simply sup­
ported symmetric beam with a symmetric uniaxial 
stress field treated as two-dimensional, (1) becomes: 

where L = SJ?an of the beam, D = size (height) of the 
beam and a = shift of the neutral axis of beam caused 
by distributed cracking. 

It might seem that the analysis of strain-softening 
would call for using finite elements. In the present 
problem of beam bending, however, this is unneces­
sary because only the states before a crack forms are 
of interest. The softening zone, restrained by the ad­
jacent material that is in an elastic state, does not yet 
localize, remaining distributed over a long portion of 
the beam. Therefore, the classical hypothesis of cross 
sections remaining planar is a good approximation. 

3 ENERGETIC-STATISTICAL FORMULA FOR 
MODULUS OF RUPI'URE 

The size effect on the modulus of rupture has been 
shown first to follow the energetic formula (BaZafit & 
NovAI< 2000c): 

( 
rDb) l/r 

f r = froo 1 + D (3) 

in which Db has the meaning of the thickness of the 
boundary layer of cracking; 

D = J -c,g"(O)) 
b \ 49'(0) 

(D& > O) (4) 

In the last expression, the signs ( .. ), denoting the 
positive part of the argument, have been inserted [ (X) 
= Max(X,O)]. The reason is that 911(0)/g'(O) can 
sometimes be positive, in which case there is no size 

effect, and this is automatically achieved by setting 
D6 = 0. In the modulus of rupture test, g" ( 0) / g' ( 0) < 
O and Db > 0. Note that for uniform tension (zero 
stress gradient.. as in the direct tensile test) there is 
no deterministic size effect according to (4) because 
g''(O) = 0 or D0 = O. 

,. :~:,H (5) 

in which 
2 EG1 

A1 ;; froo = [cig'(O)J2 ' 

EG1g"(O) 
2c1[g'(0)]3 

(6) 

(7) 

Formula (5) was proposed and used to describe 
some size effect data by Carpinteri et al. ( 1994, 1995). 
These authors named this formula the 'multifractal' 
scaling law (MFSL) and tried to justify it by frac­
ture fractality using, however, strictly geometric (non­
mechanical) arguments. This name, though, seems 
questionable t>e<:ause, as shown in Bcdant (1997 and 
1998), the mechanical analysis of fractality leads to 
a formula different from (5) (this is the case whether 
one considers the invasive fractality of the crack sur­
face or the lacunae fractality of microcrack distribu­
tion in the fracture process zone). No logical mechan­
ical argument for the size effect on aN to be a con­
sequence of the fractality of fracture has yet been of­
fered. 

To achieve greater flexibility in the modeling of test 
data for small sizes, the deterministic energetic for· 
mula may be further generalized as: 

f = f (D + r(s + l )Db)t/r (S) 
' roo D+rsDb 

where s is a non-negative constant. 
The energetic formula has been modified based on 

the fact that the large size asymptote must approach 
Weibull-type size effect. The following energetic­
statistical formula (Bcdant & NovAI< 2000c) has been 
proposed: 

[ 
D rn/m D ] 1/r 

fr = froo ( d) + r Db (9) 

where froo• Db. r and m are positive constants, 
representing unknown empirical parameters, and n 
is the number of dimensions in geometric similarity. 
The data fitting with the new formula (9) reveals 
that, for concrete and mortar, the Weibull modulus 
m ~ 24 rather than 12, the value widely accepted so 
far (Bafant & Novak 2000c). This means that, for 
extreme sizes, the nominal strength (modulus of rup­
ture) decreases, for two-dimensional (2D) similarity 
(n = 2), as the - 1 /12 power of the structure size (in 
contrast to the - 1 / 6 power that has generally been 
assumed so far). 
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4 NUMERICAL EXAMPLES: COMPARISON 
WITH EXISTING TEST DATA 

The present theory has been compared with the most 
important data sets found in the literature (B~t & 
Nov:ik 2000a.b,c). The details on the extensive test 
data used and on the comparative calculations can 
be found in the referenced articles. Here only se­
lected comparisons are included, among many results. 

4.1 Estimation of cumulative probability distribu-
tion function 

The Weibull-type integral makes it possible to esti­
mate the failure probabilities corresponding to dif­
ferent load levels. Covering the full range of proba­
bilities, one can estimate the probability distribution 
function for the modulus of rupture. The proper load 
levels are such that the entire range of the cumulative 
probability distribution function from 0 to l could be 
covered almost regularly. Thus it is efficient to use the 
idea of the stratified sampling called Latin hypercube 
sampling (McKay et al. 1979, Nov~ et al. 1998) .. 

The probability distribution functions of the ratio 
of the modulus of rupture to the strength are plot­
ted in Figure 1 for different sizes. The sample size 
N = 16 has been chosen for calculations - 16 differ­
ent probabilities, which are taken as the input into the 
nonlocal Weibull model. As expected, the steepness 
increases with an increasing size, which means that 
the scatter decreases with the size. This agrees with 
the well-known fact that the statistical correlation of 
strength imposed by averaging has a majo~ in~ue~ce 
only for small sizes. Such trends for the d1stnbut10_n 
functions were already in general sketched by Sh1-
nozuka (1972). 

An important source of statistical information 
are Koide et al.'s (1998) tests of 279 plain concrete 
beams in four-point bending, aimed at determining 
the influence of the beam length L on the flexural 
strength of beams. Koide's are excellent ~ta w_hic~ 
allow comparing the cumulative pro?ab1hty d1s~­
bution function (CPDF) of the maximum bendmg 
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moment M= at failure, over its full range. The data 
points in Figure 2 show the empirical cumulative 
probability density functions for one selected span 
(Koide's series C). A good agreement with Koide 
et al.'s data has been achieved. The calculations 
indicate a decrease of the flexural strength as the 
span increases. Notice the similar tn:nds ~n Figure 2 
(limited sizes), and more generally m Figure 1 (an 
extremely broad range of sizes). 

4.2 Fitting of energetic-statistical fommla with test 
data 

Fitting of the formula to the main test data sets avail­
able in the literature showed an excellent agreement, 
with a rather small coefficient of variation of errors 
of the formula compared to the test data. The result is 
shown in Figure 3. The corresponding coefficient of 
variation is w = 0.023 and the optimum values of the 
parameters are /,00 = 3.68 MPa, Db = 15.53 mm and 
r=l.14. 

Furthermore, the new formula was verified numer­
ically by the nonlocal Weibull theory. The result of 
nonlinear fitting of formula (9) using the nonlocal 
solutions of failure probability (medians of modulus 
of rupture) of the beam is presented in Figure 4. The 
corresponding parameters are froo = 3.76 MPa. Db = 
48.66 mm and r= 1.28. As it can be seen, both curves 
are very close. This favorable comparison suppons 
(but of course does not prove) the correctness of the 
present energetic-statistical size effect formula (9), as 
well as the nonlocal Weibull material model. 

4.3 Fitting of generalized deterministic energetic 
formula: small sizes aspect 

The same strategy and the same experimental data 
have been used to fit formula (8). A straightforward 
fitting of add.itional parameters would lead to a fitting 
of 4 unknowns parameters, which will be very un­
stable (ill-conditioned) and almost impossible. There­
fore a different strategy has been accepted: The value 

2.2 2.4 

Figure 1. Cumulative probability distributions of modulus of rupture for different sii.es. 
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Figure 2. Comparison of CPDF of maximum bending moment from Koide's (1998), series C, of four-point bending tests 

and from the probabilistic nonlocal theory. 

of s is forced to be constant during the iterative fit­
ting approach. Various fixed values s are considered 
and the coefficient of variation w of errors is calcu­
lated. Then the most suitable value of s is the value 
that minimizes w. 
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Figure 3. Optimum fit to existing test data. 

.... 

0.1 

0 Nonlooal IVcibuU (al. M) 

-Staaillieal fonnuta. m~• 

· ·····-~ 
• • • • • • asymplQINmall 

IOD!D,, \00 1000 

Figure 4. Optimum fit to the nonlocal Weibull theory. 

The result is that the coefficient of variation of er­
rors increases as parameter s increases, as is obvious 
from Figure 5. So it seems that most suitable value 
of s is zero. But this conclusion might be distorted 
because there are only very few test data in the range 
of very small sizes. 
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s 
Figure 5. Change of coefficient of variation of errors with 
parameter s. 
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Figure 6. Failure probabilities vs. size for data of Lindner 
& Sprague (1956). 



4.4 Small failure probabilities 

One advantage of the present approach is that small 
failure probabilities can be estimated without an in­
crease of computational time (as is typical for Monte­
Carlo based approaches in classical reliability engi­
neering). The same approach (Weibull integral) is 
used for estimation of the median (P1 = 0.5) and e.g. 
for P1 = ~o-9 . A broad range of failure probabili­
ties is shown, as an illustration, in Figure 6, for data 
of LincinP.r & Sprague (1956). Naturally, for smaJI 
failure probabilities, the curves approach the Weibull 
type of size effect. 

S CONCLUSIONS 

I . In the nonlocal generalization of Weibull theory 
the failure probability of a small material ele­
ment is a function of the nonlocal (spatially av­
eraged) continuum variables rather than the local 
stress. This generalization can be applied to un­
notched specimens, and in particular to the test 
of the modulus of rupture (flexural strength). 

2. A new generalized formula (9) that amalgamates 
the energetic and statistical size effectS for fail­
ures at crack initiation has been developed. Its 
correctness is supponed by good agreement with 
structural analysis according to the statistical 
nonlocal material model. 

3. The present models agree well with the test 
data sets found in the literature. The benefit 
of the present theory is the possibility to pre­
dict the full probability distribution of structural 
strength, and in particular the modulus of rup­
ture. 

4. According to the best writers' knowledge, the 
Weibull-type size effect bas not yet been repro­
duced by SFEM .. 1 

S. Compared to the existing stochastic finite el­
ement approaches, a great simplification is 
achieved by the fact that the nonlocal structural 
analysis with strain softening can be conducted 
deterministically because the probabilistic anaJ­
ysis is separated from the stress analysis, similar 
to the classical Weibull theory. 
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